
FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

Dieses Praktikum beschäftigt sich mit den Inhalten aus der Vorlesung ADS K2 Lineare Datenstrukturen

und ADS K2 Datenstrukturen v3 Trees.

1 Praktikum 1: Ringpuffer und Binärbaum

Szenario - Sie beginnen ein Praktikum bei
”
Data Fuse Inc.“, einem führenden Anbieter von BigData-

Lösungen. In der Entwicklungsabteilung unterstützen Sie bei Konzeption und Realisierung von expe-

rimentellen Lösungen. Bringen Sie erlernte Algorithmen in ein neues Zusammenspiel.

1.1 Backup mittels Ringpuffer

1.1.1 Grundidee

Anwendungsbeispiel - Die Erstellung von Backups im industriellen Umfeld ist äußerst komplex und

ein Sicherungssatz kann schnell mehrere Terabyte umfassen. Eine aufwändige Langzeitarchivierung ist

jedoch nicht immer erforderlich, da z.B. die Änderungsrate der Daten zu hoch und damit zu teuer ist.

Man bedient sich hier des Tricks der Ring-Sicherung, bei der nur eine begrenzte Anzahl Backup-Zyklen

vorgehalten werden müssen. Wird ein aktuelles Backup erstellt, muss die jeweils älteste Sicherung

gelöscht bzw. überschrieben werden. Diese Grundidee lässt sich auf eine Vielzahl von Problemen

anwenden.

1.1.2 Aufgabenstellung

Schreiben Sie ein Programm zur Erstellung und Verwaltung von Backups mittels einer Queue, die Sie

als Ringpuffer implementieren. Erstellen Sie hierfür eine Hauptklasse Ring, die die Verwaltung des

Rings ermöglicht. Diese Klasse realisiert alle erforderlichen Operationen auf der Datenstruktur (z.B.

neue Elemente hinzufügen, Inhalte ausgeben, Elemente suchen). Der eigentliche Ring besteht aus

insgesamt 6 Knoten der Klasse RingNode, die ähnlich einer verketteten Liste verknüpft sind (Abb.

2, 3, 4). Ein leerer Ring wächst mit jedem hinzugefügten RingNode, bis er seine maximale Größe von

6 erreicht hat. Um das Alter eines Datensatzes zu kennzeichnen, besitzt jeder RingNode das Attribut

oldAge (Aktuellste: ’0’, der Älteste ’5’). Erreicht der Ring seine maximale Größe, ersetzt ein neu

hinzugefügter RingNode immer den Ältesten - das älteste Backup wird überschrieben. Implementieren

Sie die im Bild auf der nächsten Seite (Abb. 4) dargestellten Klassen (einschließlich aller Attribute

und Methoden) in der bereitgestellten Datei-Vorlage. Bei Bedarf können Sie die Klassen um weitere

Hilfsattribute und Hilfsfunktionen erweitern. Lassen Sie aber vorgegebene Strukturen und friend-

Hilfsfunktionen unberührt. Beachten Sie bitte die Lösungshinweise unten, da diese weitere Details zur

Implementierung geben!

1

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

Visuelle Darstellung

Abbildung 1: Theoretische Warteschlange (Queue) mit fixer Größe. Ältestes Element steht vorne und
kann entnommen werden, jüngstes/neues Element wird hinten angestellt

Abbildung 2: Umbau als zyklisch, einfach-verkettete Liste mit max. Knoten bzw. Backups von 6,
Verknüpfung mit next-Pointern, jüngstes Element zeigt auf das älteste Element

Abbildung 3: Zu implementierender Ausbau als Ringpuffer mit max. Größe von 6. Anker zeigt immer
auf das jüngste Element. Beim Hinzufügen altern Nodes (oldAge+1) und Node mit oldAge 6 muss
entfernt werden.

2

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

Abbildung 4: Datensicherung mittels Ringpuffer, mit Klassen

Der Benutzer soll über die Konsole folgende Möglichkeiten haben:

1. Neuen Datensatz eingeben. Dieser besteht aus Daten des Backups (symbolicData:string) sowie

einer Beschreibung (description:string).

2. Suchen nach Backup-Daten. Auf der Konsole sollen Alter, Beschreibungs- und Datentext des

betreffenden Backups ausgegeben werden. Sonst eine Fehlermeldung

3. Alle Backup-Informationen ausgeben. Aufsteigende Liste aller Backups, Format siehe Beispiel

4. Programm beenden

1 == // Beispiel: Menü der Anwendung

2 SuperBackUp-Organizer over 9000, by. Son Goku

3 ==

4 1) Backup anlegen

5 2) Backup suchen

6 3) Alle Backups ausgeben

7 4) Programm beenden

8 ?>

1 ?> 1 // Beispiel: neuer Datensatz

2 +Neuen Datensatz anlegen

3 Beschreibung ?> erstes Backup

4 Daten ?> echtWichtig1

5 +Ihr Datensatz wurde hinzugefuegt.

1 ?> 2 // Beispiel: suche Datensatz

2 +Nach welchen Daten soll gesucht werden?

3 ?> echtWichtig1

4 + Gefunden in Backup: Alter 0, Beschreibung: erstes Backup, Daten: echtWichtig1

3

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

5

6 ?> 2 // Beispiel 2: suche Datensatz

7 +Nach welchen Daten soll gesucht werden?

8 ?> megaWichtig1

9 + Datensatz konnte nicht gefunden werden.

1 ?> 3 // Beispiel: Ausgabe aller Backups nachdem weitere Daten

2 // eingegeben wurden. Sortierung nach Alter

3 Alter: 0, Beschreibung: sechstes Backup, Daten: insolvenzDaten6

4 --------------------------

5 Alter: 1, Beschreibung: fuenftes Backup, Daten: kritischWichtig5

6 --------------------------

7 Alter: 2, Beschreibung: viertes Backup, Daten: unfassbarWichtig4

8 --------------------------

9 Alter: 3, Beschreibung: drittes Backup, Daten: unglaublichWichtig3

10 --------------------------

11 Alter: 4, Beschreibung: zweites Backup, Daten: echtSuperwichtig2

12 --------------------------

13 Alter: 5, Beschreibung: erstes Backup, Daten: echtWichtig1

Listing 1: Ausgabevorgabe des zu entwickelnden Programms

1.1.3 Testgetriebene Entwicklung

Um Ihnen die Entwicklung und Abgabe des Praktikums zu erleichtern, verfolgen wir einen testge-

triebenen Ansatz. Implementieren Sie die Klassen, Attribute und Methoden nach den Vorgaben aus

Abbildung 4. Die erwartete Funktionalität der Methoden ist anhand des Namens erkennbar (z.B.

addNewNode soll einen neuen Knoten, mit den als Parameter übergebenen Daten, anlegen und im

Ring platzieren.) Kern der testgetriebenen Entwicklung ist die Headerdatei catch.h, sowie die Ring-

Test.cpp Datei, über die ausführliche Unit-Tests bereitgestellt werden. Eine Datei-Vorlage für Ihre

Entwicklungsumgebung (Visual Studio Code) wird Ihnen über Ilias bereitgestellt. Sie dürfen die

Test-Headerdatei und Unittests nicht verändern.

1.1.4 Lösungshinweise

� Nutzen Sie Ihr Wissen über die verkettete Liste und allgemeine Warteschlange (Queue), da sich

die verwendeten Datenstrukturen stark ähneln (siehe Abbildungen 1, 2, 3, 4). Die Verwendung

von STL-Containern wie Queue oder List ist allerdings nicht gestattet.

� Um den Aufbau der Datenstruktur in Abbildung 4 besser zu verstehen, sehen Sie sich den

schrittweisen Umbau der Struktur von einer Queue als Grundidee (Abbildung 1), über die erste

Umstellung als zyklische, 1-fach verkettete Liste (siehe Abbildung 2), über Operationsbeispiele

4

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

der umgebauten Liste (Abbildung 3), hin zur ausgebauten Datenstruktur mit Klassen (Abbil-

dung 4) an.

� Achten Sie darauf, dass Sie die Operationen in der richtigen Reihenfolge vornehmen.

� Aktualisieren Sie stets das Attribut m oldAge-Informationen der Knoten. Platzieren Sie den

neuen Knoten richtig in der verketteten Liste.

� Überprüfen Sie, ob Sie das Attribut m anker aktualisieren müssen. Der Anker zeigt immer auf

das jüngste Element.

� In der Abbildung 4 folgt auf m oldAge 0→next der Knoten mit m oldAge 5. Es wird damit die

Schreibrichtung angezeigt, und dass der älteste Knoten mit m oldAge 5 als erster überschrieben

werden soll.

� Sie dürfen die Klassen um kleine Hilfsmethoden erweitern (wenn Sie es begründen können).

Implementierungshinweise zur Klasse Ring

� Erstellen Sie die Klasse Ring als “übergeordnete“ (keine Vererbung gemeint) Klasse für die

Kontrolle über den eigentlichen Ring.

� Die Klasse Ring soll sich nur um das Handling der Datenstruktur kümmern und keine Menü-

Funktionen besitzen (z.B. Menü ausgeben, Menüauswahl einlesen, etc.). Schreiben Sie für die

Darstellung des Menüs eigenständige Methoden in der main.cpp oder realisieren Sie dies in der

main() selbst.

� Der Datenring besteht aus max. 6 Knoten der Klasse RingNode. Die Knoten sind von außen

nicht direkt zu erreichen, sondern nur über die Klasse Ring.

� Der Anker des Ringpuffers zeigt immer auf den aktuellsten RingNode (m oldAge 0).

� Zu Beginn ist Ihr Ring noch leer und der Anker zeigt auf ”null”. Anschließend verfahren Sie

folgenderweise: Lassen Sie den Ring mit jeder Eingabe dynamisch wachsen bis die maximale

Anzahl von 6 Knoten erreicht ist. Erst wenn der Benutzer einen neuen Datensatz speichern will,

legen Sie einen neuen Knoten an und fügen ihn dem Ring hinzu. Ist die maximale Anzahl von

6 erreicht, identifizieren Sie den ältesten Knoten, ersetzen ihn durch den neuen Knoten und

verfahren weiter wie oben beschrieben. Sie müssen sich hier um die Einhaltung der Obergrenze

(6 Knoten) sowie um korrekte Einfüge-Operationen (umbiegen der next-Pointer) kümmern.

� Bei der ersten Einfüge-Operation hat Ihr neuer Knoten den Attributwert m oldAge=0 und es

muss keine Aktualisierung vorgenommen werden, da es noch keine weiteren Einträge gibt.

� Ab der zweiten Einfüge-Operation muss das m oldAge Attribut aller schon bestehenden Knoten

um 1 erhöht werden, da es einen neuen/aktuelleren Knoten mit dem Attributwert m oldAge=0

gibt und damit alle anderen Knoten ”älter”werden.

5

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

� Wenn Sie den ältesten Knoten ersetzen, so müssen Sie ihn richtig entfernen (inkl. Änderung der

betroffenen Pointer, d.h. Knoten aus der Liste entfernen und dann löschen). Sie dürfen nicht

einfach die neuen Attributwerte in den alten Node schreiben.

� Hinweise zu den Attributen und Methoden der Klasse Ring

– m countNodes: int, Anzahl der Knoten, die bereits im Ring sind.

– m anker: RingNode*, Einstiegspunkt (Anker) zur bestehenden Struktur. Bei leerer Struktur

gilt m anker == nullptr.

– addNewNode(string Beschreibung, string Data), legt einen neuen Knoten mit den Parame-

terwerten im Ring an, kümmert sich ggf. um das Überschreiben und Aktualisierung der

oldAge Informationen. Kein Rückgabewert.

– search(string Data), sucht nach Übereinstimmung mit dem Parameterwert im Ring. Es

wird nach Daten, nicht nach der Beschreibung gesucht. Konsolenausgabe wie beim Beispiel

oben, Rückgabewert entsprechend true oder false.

– print(), Ausgabe des bestehenden Rings, mit aufsteigendem Alter auf der Konsole. Siehe

Beispiel oben.

Implementierungshinweise zur Klasse RingNode

� Die Klasse RingNode ist der
”
dumme“ Datencontainer, in dessen Attribute die Daten der aktu-

ellen Sicherung geschrieben werden.

� Einzige Intelligenz ist der
”
next“ Pointer auf den nächsten Knoten.

� RingNode muss eine eigene Klasse sein und darf nicht einfach als struct realisiert werden.

6

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

1.2 Binärbaum - Datenhaltung und Operation

Anwendungsbeispiel - Aus der letzten Zielgruppenanalyse wird Ihnen ein großer Datensatz übergeben,

der für Ihre Analysten nutzbar gemacht werden soll. Stellen Sie Ihren Kollegen ein Programm zur

Verfügung, welches den Datensatz einlesen, aufbereiten und verändern kann. Zur hierarchischen Or-

ganisation der Datensätze, haben Sie sich für die Verwendung eines Binärbaums entschieden.

1.2.1 Aufgabenstellung

Entwickeln Sie eine Hauptklasse Tree für den Baum, die als übergeordnete Klasse (keine Vererbung

gemeint) die Kontrolle über den Baum hat und für alle Operationen verantwortlich ist (z.B. Knoten

hinzufügen, löschen, suchen, ausgeben, usw.). Knoten des Baumes bestehen aus TreeNodes, die die

in der Abbildung (5) angegebenen Attribute, Funktionen, sowie die erforderlichen Referenzen auf den

links/rechts folgenden TreeNode bzw. Nullpointer besitzen. Den zu realisierenden Aufbau und die zu

implementierenden Funktionalitäten der beiden Klassen können Sie der Abbildung 5 entnehmen. Sie

dürfen die Klassen um kleine Hilfsmethoden und -attribute erweitern, wenn es für die Umsetzung

zwingend erforderlich ist. Wo ein TreeNode im Tree platziert wird, entscheidet sich anhand des Attri-

buts m NodeOrderID. Dieser Integer-Wert errechnet sich aus den Attributen m Age, m PostCode und

m Income des Knotens.

m Age(int) +m PostCode(int) +m Income(double) = m NodeOrderID(int)

Um den chronologischen Ablauf der Operationen später nachvollziehen zu können, benötigen Sie für

jeden TreeNode eine zusätzliche Seriennummer (ID). Inkrementieren Sie hierfür das Integer-Attribut

m NodeChronologicalID des TreeNodes. Beachten Sie, dass die m NodeChronologicalID eine fortlau-

fende Seriennummer ist und nicht mit der m NodeOrderID zu verwechseln ist. Ihr Baum soll ferner

in der Lage sein, Nodes anhand des Attributes m Name zu finden und auszugeben. Berücksichtigen

Sie Mehrfachvorkommen von Namen. Weiter sollen Nodes über ihre m NodeOrderID identifiziert und

aus dem Baum gelöscht werden können. Löschoperationen müssen den Baum in korrektem Zustand

hinterlassen. Weitere Details zu den Operationen (z.B. Löschen und Ausgabe) entnehmen Sie bitte

den Lösungshinweisen in Kapitel 1.2.4. Beachten Sie die Lösungshinweise.

Der Benutzer soll über ein Menü folgende Möglichkeiten haben :

� Hinzufügen neuer Datensätze als Benutzereingabe

� Importieren neuer Datensätze aus einer CSV Datei , (Funktion wird vorgegeben)

� Löschen eines vorhandenen Datensatzes anhand der NodeOrderID.

� Suchen eines Datensatzes anhand des Personennamens.

� Anzeige des vollständigen Baums nach Preorder/Postorder/Inorder.

� Anzeige des vollständigen Baums nach Levelorder mit Level-Angabe.

7

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

� Programm beenden.

1 === // Beispiel: Menü der Anwendung

2 ADS - ELK - Stack v1.9, by 25th Bam

3 ===

4 1) Datensatz einfuegen, manuell

5 2) Datensatz einfuegen, CSV Datei

6 3) Datensatz loeschen

7 4) Suchen

8 5) Datenstruktur anzeigen (pre/post/in)

9 6) Level-Order Ausgabe

10 7) Beenden

11 ?>

1 ?>1 // Beispiel: manuelles Hinzufügen eines Datensatzes

2 + Bitte geben Sie die den Datensatz ein:

3 Name ?> Mustermann

4 Alter ?> 1

5 Einkommen ?> 1000.00

6 PLZ ?> 1

7 + Ihr Datensatz wurde eingefuegt

1 ?>5 // Beispiel: Anzeigen eines Trees mit mehreren Einträgen in Preorder

2 Ausgabereihenfolge ?>pre

3 ID | Name | Age | Income | PostCode | OrderID

4 ----+------------------+-------+-----------+----------+-------

5 0| Mustermann| 1| 1000| 1| 1002

6 3| Hans| 1| 500| 1| 502

7 5| Schmitz| 1| 400| 2| 403

8 4| Schmitt| 1| 500| 2| 503

9 1| Ritter| 1| 2000| 1| 2002

10 2| Kaiser| 1| 3000| 1| 3002

1 ?>6 // Beispiel: Anzeige nach Levelorder

2 ID | Name | Age | Income | PostCode | OrderID | Level

3 ----+------------------+-------+-----------+----------+---------+------

4 0| Mustermann| 1| 1000| 1| 1002| 0

5 3| Hans| 1| 500| 1| 502| 1

6 1| Ritter| 1| 2000| 1| 2002| 1

7 5| Schmitz| 1| 400| 2| 403| 2

8 4| Schmitt| 1| 500| 2| 503| 2

9 2| Kaiser| 1| 3000| 1| 3002| 2

8

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

1 ?>4 // Beispiel: Datensatz suchen

2 + Bitte geben Sie den zu suchenden Datensatz an

3 Name ?> Ritter

4 + Fundstellen:

5 NodeID: 1, Name: Ritter, Alter: 1, Einkommen: 2000, PLZ: 1, PosID: 2002

1 ?>3 // Beispiel: Datensatz löschen

2 + Bitte geben Sie den zu loeschenden Datensatz an

3 NodeOrderID ?> 503

4 + Eintrag wurde geloescht.

1 ?> 2 // Beispiel: CSV Import

2 + Möchten Sie die Daten aus der Datei "ExportZielanalyse.csv" importieren (j/n) ?> j

3 + Daten wurden dem Baum hinzugefügt.

Abbildung 5: Aufbau der Baumstruktur und beteiligten Klassen

Programmieren Sie zusätzlich mehrere Klassen-Methoden levelOrder(void) in der Klasse Tree, wel-

che die Knoten des Baumes in Level-Order ausgibt. Da die Anzahl der Knoten im Baum selber nicht

gespeichert wird, reicht es einfach alle Knoten bis zum Level 10 auszugeben. (Falls es ab einem be-

stimmten Level keine Knoten mehr gibt, kann abgebrochen werden oder nichts ausgegeben werden).

Dafür dürfen Sie gerne rekursive Hilfsmethoden benutzen. Implementieren Sie außerdem die Metho-

den printInOrder, printPreOrder) und printPostOrder), die die Knoten in der entsprechenden

Reihenfolge ausgeben.

1.2.2 Testgetriebene Entwicklung

Um Ihnen die Entwicklung und Abgabe des Praktikums zu erleichtern, werden Testroutinen zur

Verfügung gestellt. Es ist daher zwingend erforderlich, dass Sie Klassen, Attribute und Methoden

nach den Vorgaben aus Abbildung 5 und den Lösungshinweisen implementieren - auch die Benen-

nung ist relevant. Die erwartete Funktionalität der Methoden ist anhand der Namen erkennbar (z.B.

9

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

addNode soll einen neuen Knoten, mit den als Parameter übergebenen Daten, anlegen und im Tree

platzieren.) Kern der testgetriebenen Entwicklung sind die Dateien catch.h, sowie TreeTest.cpp, über

die die ausführlichen Unit-Tests bereitgestellt werden. Sie dürfen diese beiden Dateien, sowie die friend-

Deklarationen in den Klassen, nicht verändern! Als Vorlage werden Ihnen wieder die erforderlichen .h

und .cpp Dateien zur Verfügung gestellt, die Sie z.B. in VisualStudio importieren können.

1.2.3 Verständnisfragen

Beantworten Sie folgende Fragen nach erfolgreicher Implementierung:

� Die m NodeChronologicalID eignet sich nicht als Positionsangabe. Warum? Wie würde sich das

auf den Baum auswirken?

� Die Erstellung und Verwendung der m NodeOrderID ist nicht unproblematisch. Warum?

� Was würde passieren, wenn die m NodeOrderID mehrfach vergeben wird?

� Welche Interpretation lassen die sortierten Daten später zu? Was könnten Sie aus den Zusam-

menhängen schließen?

� Kennen Sie eine Datenstruktur, die sich für eine solche Aufgabe besser eignen würde?

� Wie kann man die Level-, In-, Pre-, Postorder Ausgabe überprüfen?

1.2.4 Lösungshinweise

Klassen, Methoden und Attribute

� Der Baum Tree und die Knoten/Blätter TreeNodes sind je eigenständige Klassen, die nicht

untereinander vererben.

� Erstellen Sie für die Klasse Tree einen Destruktor, der die Datenstruktur vernünftig aufräumt und

löscht. Tipp: Sie können rekursive Funktionen bzw. eine mod. Traversierungsmethode nutzen.

� Diem NodeChronologicalID ist eine fortlaufende Seriennummer für jeden Node, die beim Anlegen eines neuen

Datensatzes einmalig vergeben wird und die Einfüge-Reihenfolge nachvollziehbar macht.

� Diem NodeOrderID ist eine errechnete Positionsangabe für jeden Node, die beim Anlegen eines neuen

Datensatzes einmalig vergeben wird und aus dem m Age, dem m Income und der m PostCode

des Datensatzes errechnet wird. Zweck ist die korrekte Platzierung im Baum.

� Nutzen Sie die Datenkapselung und schützen Sie alle Attribute vor Zugriff. Erstellen Sie Set-

ter/Getter, wenn es sinnvoll ist.

� Der Tree besitzt einen Pointer m anker auf den ersten TreeNode. Ist der Baum leer, muss

dieser Pointer auf den Nullpointer zeigen.

10

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

� Alle TreeNodes haben zwei Zeiger vom Typ TreeNode, die auf die nachfolgenden linken/rechten

Knoten vom Datentyp TreeNode verweisen. Gibt es keine Nachfolger, so müssen die Referenzen

auf den Nullpointer verweisen.

� Verdeutlichung der UML Parameterfolge von Klasse Tree (siehe Abbildung 5):

– addNode(string Name,int Age, double Income, int PostCode), kein Rückgabewert

– deleteNode(int NodeOrderID), bool Rückgabewert entsprechend true oder false

– searchNode(string Name), bool Rückgabewert entsprechend true oder false

– printAll(void), kein Rückgabewert

– levelOrder(void), kein Rückgabewert (Ausgabe der Knoten)

� Verdeutlichung der UML Parameterfolge der Klasse TreeNode (siehe Abbildung 5):

– TreeNode(int NodeOrderID, int NodeChronologicalID, string Name, int Age, double Income,

int PostCode), Konstruktor der Klasse

– print(void), kein Rückgabewert

– Getter/Setter wie beschrieben

Baum-Operationen

� Das Einfügen eines neuen Knotens vom Datentyp TreeNode erfolgt anhand der errechneten

Positionsangabe (m NodeOrderID). Laufen Sie ab der Wurzel die bestehenden TreeNodes ab,

vergleichen Sie die Positionsangabe und wechseln in deren Abhängigkeit dann in den linken oder

rechten Teilbaum. Sie können davon ausgehen, dass der Benutzer nur gültige Werte eingibt, die

nicht zu einer Mehrfachvergabe der m NodeOrderID führen.

� Bei der Suchfunktion soll nach dem Namen einer Person gesucht werden und alle zugehörigen

Daten ausgegeben werden. Beachten Sie hierbei, dass m Name kein eindeutiges Schlüsselelement

ist und es mehrere Datensätze mit dem Personennamen z.B.
”
Schmitt“ geben kann. Sie müssen

alle passenden Einträge finden und ausgeben. Überlegen Sie, ob hier eine rekursive oder iterativer

Vorgehensweise besser ist.

� Löschen eines vorhandenen Datensatzes ist die anspruchsvollste Operation im Binärbaum. Haben

Sie die Position des TreeNodes im Tree ausgemacht, müssen Sie auf folgende 4 Fälle richtig

reagieren. Der zu löschende TreeNode...

1. ... ist die Wurzel.

2. ... hat keine Nachfolger.

3. ... hat nur einen Nachfolger (rechts oder links).

4. ... hat zwei Nachfolger.

11

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

Vorgabe: verwenden Sie bei Löschoperationen mit zwei Nachfolgern das Verfahren

’Minimum des rechten Teilbaums’. Siehe Vorlesung zum Binärbaum. Denken Sie dar-

an, dass Sie bei einer Löschoperation auch immer die Referenz des Vorgängers auf die neue

Situation umstellen müssen.

� Die erwartete Funktionalität der Methoden aus Bild 5 ergibt sich aus der Benennung. Erweitern

Sie die Klassen um eigene Methoden und Attribute wenn es zwingend erforderlich ist.

� Sie müssen den Baum nicht ausbalancieren.

� Die Klasse zum Knoten TreeNode darf keine Referenz
¯

zum Vorgängerknoten enthalten. Dadurch

würde ihre Implementierung komplizierter werden.

� Die Attribute der Klasse TreeNode dürfen keine Referenz zum Vorgängerknoten enthalten.

Eingabe der Daten

� Manuelle Eingabe - Wie im Schaubild oben zu erkennen soll der Benutzer über die Konsole einen

neuen Datensatz anlegen können. Dabei werden die benötigten Positionen der Reihe nach als

Benutzereingabe aufgenommen.

� CSV-Datei - Um einen schnelleren Import zu ermöglichen, soll der Benutzer auch eine CSV

Datei einlesen können. Dieser Teil wird Ihnen als Funktion in der main.cpp fertig zur Verfügung

gestellt. Beachten Sie dabei folgende Punkte:

– Die CSV Datei “ExportZielanalyse.csv“ liegt im gleichen Verzeichnis wie das Programm.

Sie müssen dem Benutzer keine andere Datei zur Auswahl geben oder eine Eingabe für

den Dateinamen realisieren. Fragen Sie lediglich, ob die Datei mit dem Namen wirklich

importiert werden soll.

– Die Reihenfolge der Spalten in der CSV Datei, entspricht der manuellen Eingabe (siehe

Beispiel oben).

– Der CSV Import darf die bereits vorhandenen, manuell eingetragenen, Datensätze nicht

überschreiben, sondern nur den Tree damit erweitern.

Ausgaben und Benutzerinteraktion

� Funktionen zur Realisierung des Menüs dürfen nicht Teil der Klasse sein. Schreiben Sie diese

separat in Ihrer main.cpp.

� Übernehmen Sie das Menü aus dem Beispiel oben.

� Fehlerhafte Eingaben im Menü müssen abgefangen werden.

� Bei fehlgeschlagenen Operationen wird eine Fehlermeldung erwartet.

12

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

� Die Ausgabe des gesamten Baums (alle TreeNode Daten, siehe Beispiel) soll nach der aus-

gewählten Traversierungsmethode erfolgen.

� Formatieren Sie die Ausgaben sinnvoll (siehe Beispiel).

13

	Praktikum 1: Ringpuffer und Binärbaum
	Backup mittels Ringpuffer
	Grundidee
	Aufgabenstellung
	Testgetriebene Entwicklung
	Lösungshinweise

	Binärbaum - Datenhaltung und Operation
	Aufgabenstellung
	Testgetriebene Entwicklung
	Verständnisfragen
	Lösungshinweise

