FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

Dieses Praktikum beschdftigt sich mit den Inhalten aus der Vorlesung ADS_K2_Lineare_Datenstrukturen
und ADS_K2_Datenstrukturen_v3_Trees.

FH AACHEN

1 Praktikum 1: Ringpuffer und Bindrbaum

Szenario - Sie beginnen ein Praktikum bei ,Data Fuse Inc.*, einem fithrenden Anbieter von BigData-
Losungen. In der Entwicklungsabteilung unterstiitzen Sie bei Konzeption und Realisierung von expe-

rimentellen Losungen. Bringen Sie erlernte Algorithmen in ein neues Zusammenspiel.

1.1 Backup mittels Ringpuffer
1.1.1 Grundidee

Anwendungsbeispiel - Die Erstellung von Backups im industriellen Umfeld ist duflerst komplex und
ein Sicherungssatz kann schnell mehrere Terabyte umfassen. Eine aufwéndige Langzeitarchivierung ist
jedoch nicht immer erforderlich, da z.B. die Anderungsrate der Daten zu hoch und damit zu teuer ist.
Man bedient sich hier des Tricks der Ring-Sicherung, bei der nur eine begrenzte Anzahl Backup-Zyklen
vorgehalten werden miissen. Wird ein aktuelles Backup erstellt, muss die jeweils élteste Sicherung
geloscht bzw. {iberschrieben werden. Diese Grundidee lédsst sich auf eine Vielzahl von Problemen

anwenden.

1.1.2 Aufgabenstellung

Schreiben Sie ein Programm zur Erstellung und Verwaltung von Backups mittels einer Queue, die Sie
als Ringpuffer implementieren. Erstellen Sie hierfiir eine Hauptklasse Ring, die die Verwaltung des
Rings ermdglicht. Diese Klasse realisiert alle erforderlichen Operationen auf der Datenstruktur (z.B.
neue Elemente hinzufiigen, Inhalte ausgeben, Elemente suchen). Der eigentliche Ring besteht aus
insgesamt 6 Knoten der Klasse RingNode, die dhnlich einer verketteten Liste verkniipft sind (Abb.
. Ein leerer Ring wichst mit jedem hinzugefiigten RingNode, bis er seine maximale Gréfle von
6 erreicht hat. Um das Alter eines Datensatzes zu kennzeichnen, besitzt jeder RingNode das Attribut
oldAge (Aktuellste: '0’, der Alteste ’5’). Erreicht der Ring seine maximale Grofe, ersetzt ein neu
hinzugefiigter RingNode immer den Altesten - das dlteste Backup wird iiberschrieben. Implementieren
Sie die im Bild auf der néchsten Seite (Abb. [4) dargestellten Klassen (einschliefllich aller Attribute
und Methoden) in der bereitgestellten Datei-Vorlage. Bei Bedarf kénnen Sie die Klassen um weitere
Hilfsattribute und Hilfsfunktionen erweitern. Lassen Sie aber vorgegebene Strukturen und friend-
Hilfsfunktionen unberiihrt. Beachten Sie bitte die Lisungshinweise unten, da diese weitere Details zur

Implementierung geben!

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und)) SS 2024 ¢
Informationstechnik Prof. Dlpl.—Inf. Ingrld Scholl ;

FH AACHEN

Visuelle Darstellung

RingNode
(oldAge 4)

S

RingNode
(oldAge 0)

-

RingNode RingNode RingNode
(oldAge 3) (oldAge 2) (oldAge 1)

- = e ==

RingNode
(oldAge 5)

[S S,

=

Abbildung 1: Theoretische Warteschlange (Queue) mit fixer GroBe. Altestes Element steht vorne und
kann entnommen werden, jiingstes/neues Element wird hinten angestellt

RingNode RingNode RingNode RingNode RingNode
(oldAge 4) (oldAge 3) (oldAge 2) (oldAge 1) (oldAge 0)

B N) BN ¥ IR N I N

Abbildung 2: Umbau als zyklisch, einfach-verkettete Liste mit max. Knoten bzw. Backups von 6,
Verkniipfung mit next-Pointern, jlingstes Element zeigt auf das dlteste Element

e [It [[[¢

Abbildung 3: Zu implementierender Ausbau als Ringpuffer mit max. Grofie von 6. Anker zeigt immer
auf das jiingste Element. Beim Hinzufiigen altern Nodes (oldAge+1) und Node mit oldAge 6 muss
entfernt werden.

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und SS 2024 =
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl 8 I
Ring anker zeigt immer auf den RingNode

- m_countnodes: int aktuellsten Node (mit oldAge 0) - m_oldAge: int

- m_anker: RingNode* - m_description: String

+ Ring(): void Sie dirfen die Klassen um -l al bz S

+ addNewNode(String,String): void . . - - m_next: RingNode*

+ search(String,): bool kleine Hilfsfunktionen + RingNode(): void

+ print(): void + RingNode(int,String,String): void

+ getOldAge(): int
+ setOldAge(int): void
+ getDescription(): String

+ setDescription(String): void
next next next next next + getSymbolicData(): String

+ setSymbolicData(String):void

+ getNext(): RingNode*

RingNode RingNode RingNode RingNode RingNode RingNode . .
(oldAge 0) (oldAge 5) (oldAge 4) (oldAge 3) (oldAge 2) (oldAge 1) + sefnext(RingNode"): void

Abbildung 4: Datensicherung mittels Ringpuffer, mit Klassen

Der Benutzer soll {iber die Konsole folgende Moglichkeiten haben:
1. Neuen Datensatz eingeben. Dieser besteht aus Daten des Backups (symbolicData:string) sowie
einer Beschreibung (description:string).

2. Suchen nach Backup-Daten. Auf der Konsole sollen Alter, Beschreibungs- und Datentext des

betreffenden Backups ausgegeben werden. Sonst eine Fehlermeldung
3. Alle Backup-Informationen ausgeben. Aufsteigende Liste aller Backups, Format siehe Beispiel

4. Programm beenden

1 // Beispiel: Menii der Anwendung

> SuperBackUp-Organizer over 9000, by. Son Goku

1 1) Backup anlegen

5 2) Backup suchen

¢ 3) Alle Backups ausgeben
7 4) Programm beenden

g5 P>

> 1 // Beispiel: neuer Datensatz

+Neuen Datensatz anlegen
3 Beschreibung 7> erstes Backup
1+ Daten 7> echtWichtigl

5 +Ihr Datensatz wurde hinzugefuegt.

17> 2 // Beispiel: suche Datensatz
2 +Nach welchen Daten soll gesucht werden?

7> echtWichtigl

1 + Gefunden in Backup: Alter 0O, Beschreibung: erstes Backup, Daten: echtWichtigl

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl I
7> 2 // Beispiel 2: suche Datensatz

+Nach welchen Daten soll gesucht werden?
7> megaWichtigl

+ Datensatz konnte nicht gefunden werden.

7> 3 // Beispiel: Ausgabe aller Backups nachdem weitere Daten
// eingegeben wurden. Sortierung nach Alter

Alter: O, Beschreibung: sechstes Backup, Daten: insolvenzDaten6

Alter: 5, Beschreibung: erstes Backup, Daten: echtWichtigl

Listing 1: Ausgabevorgabe des zu entwickelnden Programms

1.1.3 Testgetriebene Entwicklung

Um Thnen die Entwicklung und Abgabe des Praktikums zu erleichtern, verfolgen wir einen testge-
triebenen Ansatz. Implementieren Sie die Klassen, Attribute und Methoden nach den Vorgaben aus
Abbildung {4l Die erwartete Funktionalitdt der Methoden ist anhand des Namens erkennbar (z.B.
addNewNode soll einen neuen Knoten, mit den als Parameter iibergebenen Daten, anlegen und im
Ring platzieren.) Kern der testgetriebenen Entwicklung ist die Headerdatei catch.h, sowie die Ring-
Test.cpp Datei, iiber die ausfithrliche Unit-Tests bereitgestellt werden. Eine Datei-Vorlage fiir Thre
Entwicklungsumgebung (Visual Studio Code) wird Ihnen iiber Ilias bereitgestellt. Sie diirfen die

Test-Headerdatei und Unittests nicht verindern.

1.1.4 Lo&sungshinweise

e Nutzen Sie Thr Wissen iiber die verkettete Liste und allgemeine Warteschlange (Queue), da sich
die verwendeten Datenstrukturen stark dhneln (siche Abbildungen . Die Verwendung

von STL-Containern wie Queue oder List ist allerdings nicht gestattet.

e Um den Aufbau der Datenstruktur in Abbildung [4] besser zu verstehen, sehen Sie sich den
schrittweisen Umbau der Struktur von einer Queue als Grundidee (Abbildung , iiber die erste
Umstellung als zyklische, 1-fach verkettete Liste (siehe Abbildung , iiber Operationsbeispiele

FH Aachen

der umgebauten Liste (Abbildung , hin zur ausgebauten Datenstruktur mit Klassen (Abbil-
dung |4)) an.

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

FH AACHEN

e Achten Sie darauf, dass Sie die Operationen in der richtigen Reihenfolge vornehmen.

e Aktualisieren Sie stets das Attribut m_oldAge-Informationen der Knoten. Platzieren Sie den

neuen Knoten richtig in der verketteten Liste.

e Uberpriifen Sie, ob Sie das Attribut m_anker aktualisieren miissen. Der Anker zeigt immer auf

das jiingste Element.

e In der Abbildung [folgt auf m_oldAge 0—next der Knoten mit m_oldAge 5. Es wird damit die
Schreibrichtung angezeigt, und dass der dlteste Knoten mit m_oldAge 5 als erster iiberschrieben

werden soll.

e Sie diirfen die Klassen um kleine Hilfsmethoden erweitern (wenn Sie es begriinden koénnen).

Implementierungshinweise zur Klasse Ring

e Erstellen Sie die Klasse Ring als “iibergeordnete® (keine Vererbung gemeint) Klasse fiir die

Kontrolle iiber den eigentlichen Ring.

e Die Klasse Ring soll sich nur um das Handling der Datenstruktur kiimmern und keine Menii-
Funktionen besitzen (z.B. Menii ausgeben, Meniiauswahl einlesen, etc.). Schreiben Sie fiir die
Darstellung des Meniis eigenstéindige Methoden in der main.cpp oder realisieren Sie dies in der

main() selbst.

e Der Datenring besteht aus max. 6 Knoten der Klasse RingNode. Die Knoten sind von auflen

nicht direkt zu erreichen, sondern nur iiber die Klasse Ring.
e Der Anker des Ringpuffers zeigt immer auf den aktuellsten RingNode (m-oldAge 0).

e Zu Beginn ist Thr Ring noch leer und der Anker zeigt auf “null”. Anschlieflend verfahren Sie
folgenderweise: Lassen Sie den Ring mit jeder Eingabe dynamisch wachsen bis die maximale
Anzahl von 6 Knoten erreicht ist. Erst wenn der Benutzer einen neuen Datensatz speichern will,
legen Sie einen neuen Knoten an und fiigen ihn dem Ring hinzu. Ist die maximale Anzahl von
6 erreicht, identifizieren Sie den <esten Knoten, ersetzen ihn durch den neuen Knoten und
verfahren weiter wie oben beschrieben. Sie miissen sich hier um die Einhaltung der Obergrenze

(6 Knoten) sowie um korrekte Einfiige-Operationen (umbiegen der next-Pointer) kiimmern.

e Bei der ersten Einfiige-Operation hat Thr neuer Knoten den Attributwert m_oldAge=0 und es

muss keine Aktualisierung vorgenommen werden, da es noch keine weiteren Eintrige gibt.

e Ab der zweiten Einfiige-Operation muss das m_oldAge Attribut aller schon bestehenden Knoten
um 1 erhoht werden, da es einen neuen/aktuelleren Knoten mit dem Attributwert m_oldAge=0

gibt und damit alle anderen Knoten ”<er” werden.

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

e Wenn Sie den #ltesten Knoten ersetzen, so miissen Sie ihn richtig entfernen (inkl. Anderung der

FH AACHEN

betroffenen Pointer, d.h. Knoten aus der Liste entfernen und dann l6schen). Sie diirfen nicht

einfach die neuen Attributwerte in den alten Node schreiben.
e Hinweise zu den Attributen und Methoden der Klasse Ring

— m_countNodes: int, Anzahl der Knoten, die bereits im Ring sind.

— me-anker: RingNode*, Einstiegspunkt (Anker) zur bestehenden Struktur. Bei leerer Struktur

gilt m_anker == nullptr.

— addNewNode(string Beschreibung, string Data), legt einen neuen Knoten mit den Parame-
terwerten im Ring an, kiimmert sich ggf. um das Uberschreiben und Aktualisierung der

oldAge Informationen. Kein Riickgabewert.

— search(string Data), sucht nach Ubereinstimmung mit dem Parameterwert im Ring. Es
wird nach Daten, nicht nach der Beschreibung gesucht. Konsolenausgabe wie beim Beispiel

oben, Riickgabewert entsprechend true oder false.

— print(), Ausgabe des bestehenden Rings, mit aufsteigendem Alter auf der Konsole. Siehe

Beispiel oben.
Implementierungshinweise zur Klasse RingINode

e Die Klasse RingNode ist der ,dumme® Datencontainer, in dessen Attribute die Daten der aktu-

ellen Sicherung geschrieben werden.
e Einzige Intelligenz ist der ,next“ Pointer auf den néchsten Knoten.

e RingNode muss eine eigene Klasse sein und darf nicht einfach als struct realisiert werden.

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

FH AACHEN

1.2 Bindrbaum - Datenhaltung und Operation

Anwendungsbeispiel - Aus der letzten Zielgruppenanalyse wird Ihnen ein grofier Datensatz iibergeben,
der fiir Thre Analysten nutzbar gemacht werden soll. Stellen Sie Thren Kollegen ein Programm zur
Verfiigung, welches den Datensatz einlesen, aufbereiten und verdndern kann. Zur hierarchischen Or-

ganisation der Datensétze, haben Sie sich fiir die Verwendung eines Bindrbaums entschieden.

1.2.1 Aufgabenstellung

Entwickeln Sie eine Hauptklasse Tree fiir den Baum, die als iibergeordnete Klasse (keine Vererbung
gemeint) die Kontrolle iiber den Baum hat und fiir alle Operationen verantwortlich ist (z.B. Knoten
hinzufiigen, l6schen, suchen, ausgeben, usw.). Knoten des Baumes bestehen aus TreeNodes, die die
in der Abbildung angegebenen Attribute, Funktionen, sowie die erforderlichen Referenzen auf den
links /rechts folgenden TreeNode bzw. Nullpointer besitzen. Den zu realisierenden Aufbau und die zu
implementierenden Funktionalitdten der beiden Klassen kénnen Sie der Abbildung [5| entnehmen. Sie
diirfen die Klassen um kleine Hilfsmethoden und -attribute erweitern, wenn es fiir die Umsetzung
zwingend erforderlich ist. Wo ein TreeNode im Tree platziert wird, entscheidet sich anhand des Attri-
buts m_NodeOrderID. Dieser Integer-Wert errechnet sich aus den Attributen m_Age, m_PostCode und

m_Income des Knotens.
m_Age(int) + m_PostCode(int) + m_Income(double) = m_NodeOrderI D(int)

Um den chronologischen Ablauf der Operationen spéter nachvollziehen zu kénnen, bendtigen Sie fiir
jeden TreeNode eine zusétzliche Seriennummer (ID). Inkrementieren Sie hierfiir das Integer-Attribut
m_NodeChronologicallD des TreeNodes. Beachten Sie, dass die m_NodeChronologicallD eine fortlau-
fende Seriennummer ist und nicht mit der m_NodeOrderID zu verwechseln ist. Thr Baum soll ferner
in der Lage sein, Nodes anhand des Attributes m_Name zu finden und auszugeben. Beriicksichtigen
Sie Mehrfachvorkommen von Namen. Weiter sollen Nodes iiber ihre m_NodeOrderID identifiziert und
aus dem Baum geloscht werden konnen. Loschoperationen miissen den Baum in korrektem Zustand
hinterlassen. Weitere Details zu den Operationen (z.B. Loschen und Ausgabe) entnehmen Sie bitte
den Losungshinweisen in Kapitel Beachten Sie die Lisungshinweise.

Der Benutzer soll iiber ein Menii folgende Moglichkeiten haben :

e Hinzufiigen neuer Datenséitze als Benutzereingabe
e Importieren neuer Datensiitze aus einer CSV Datei , (Funktion wird vorgegeben)

Loschen eines vorhandenen Datensatzes anhand der NodeOrderID.

Suchen eines Datensatzes anhand des Personennamens.

Anzeige des vollstiandigen Baums nach Preorder/Postorder/Inorder.

Anzeige des vollstandigen Baums nach Levelorder mit Level-Angabe.

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl

FH AACHEN

e Programm beenden.

// Beispiel: Menii der Anwendung

V]

N

N}

ID | Name | Age | Income | PostCode | OrderID
e e o pmmmmm pommm o o
0l Mustermann | 1] 1000]| 1] 1002
3| Hans| 11 500]| 1] 502
5] Schmitz]| 1| 400]| 2| 403
4| Schmitt]| 11 500]| 2| 503
1] Ritter| 1| 2000 | 1] 2002
2| Kaiser| 1| 3000 11 3002
7>6 // Beispiel: Anzeige nach Levelorder
ID | Name | Age | Income | PostCode | OrderID | Level
—————— e e s e S
ol Mustermann | 1] 1000 | 1] 1002 0
3| Hans| 1] 500 | 1] 502 1
11 Ritter| 1| 2000 | 1] 2002 1
5| Schmitz]| 11 400]| 2| 403/ 2
4| Schmitt| 1| 500]| 2| 503 2
2| Kaiser| 1] 3000 1] 3002 2

ADS - ELK - Stack v1.9, by 25th Bam

1)
2)
3)
4)
5)
6)
7)
7>

Suchen

Beenden

7>1

Datensatz loeschen

Level-Order Ausgabe

// Beispiel: manuelles Hinzufiigen eines Datensatzes

Datensatz einfuegen, manuell

Datensatz einfuegen, CSV Datei

Datenstruktur anzeigen (pre/post/in)

+ Bitte geben Sie die den Datensatz ein:

Name 7> Mustermann

Alter 7> 1

Einkommen ?> 1000.00

PLZ 7> 1

+ TIhr Datensatz wurde eingefuegt

?>5

Ausgabereihenfolge 7>pre

// Beispiel: Anzeigen eines Trees mit mehreren Eintré&gen

in Preorder

1

2

3

1

5

3

1

1
2

3

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl gil
7>4 // Beispiel: Datensatz suchen

+ Bitte geben Sie den zu suchenden Datensatz an
Name 7> Ritter
+ Fundstellen:

NodeID: 1, Name: Ritter, Alter: 1, Einkommen: 2000, PLZ: 1, PosID: 2002

7>3 // Beispiel: Datensatz lGschen
+ Bitte geben Sie den zu loeschenden Datensatz an
NodeOrderID 7> 503

+ Eintrag wurde geloescht.

7> 2 // Beispiel: CSV Import
+ Mochten Sie die Daten aus der Datei "ExportZielanalyse.csv" importieren (j/n) 7> j

+ Daten wurden dem Baum hinzugefiigt.

Tree TreeNode

- m_anker: TreeNode” - m_NodeOrderlD: int
- m_currentNodeChronologicallD:int W“fze.t - m_NodeChronologicallD: int
+ Tree() - m_Name: String
+ ~Tree() - m_Age: int
+ addNode(string,int,double,int): void -m_Income: double
+ deleteNode(int): bool TreeNode - m_PostCode: int
+ searchNode(string): bool I I - m_left: TreeNode*
+ printAll(): void - m_right: TreeNode*
+ printLevelOrder(): void + TreeNode(int,int,String,int,double, int)
- printPreOrder(): void
- printinOrder(): void + Getter/Setter aller Attribute
- printPostOrder(): void TreeNode TreeNode

NULL NULL NULL + print(): void
Ist der Baum leer, zeigt der Anker auf “null”
Sie kénnen die Klassen um Hilfsattribute/ -

funktionen erweitern TreeNode
NULL NULL

Abbildung 5: Aufbau der Baumstruktur und beteiligten Klassen

Programmieren Sie zusétzlich mehrere Klassen-Methoden levelOrder(void) in der Klasse Tree, wel-
che die Knoten des Baumes in Level-Order ausgibt. Da die Anzahl der Knoten im Baum selber nicht
gespeichert wird, reicht es einfach alle Knoten bis zum Level 10 auszugeben. (Falls es ab einem be-
stimmten Level keine Knoten mehr gibt, kann abgebrochen werden oder nichts ausgegeben werden).
Dafiir diirfen Sie gerne rekursive Hilfsmethoden benutzen. Implementieren Sie auflerdem die Metho-
den printInOrder, printPreOrder) und printPostOrder), die die Knoten in der entsprechenden

Reihenfolge ausgeben.

1.2.2 Testgetriebene Entwicklung

Um Thnen die Entwicklung und Abgabe des Praktikums zu erleichtern, werden Testroutinen zur
Verfiigung gestellt. Es ist daher zwingend erforderlich, dass Sie Klassen, Attribute und Methoden
nach den Vorgaben aus Abbildung [5| und den Losungshinweisen implementieren - auch die Benen-

nung ist relevant. Die erwartete Funktionalitdt der Methoden ist anhand der Namen erkennbar (z.B.

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

addNode soll einen neuen Knoten, mit den als Parameter iibergebenen Daten, anlegen und im Tree

FH AACHEN

platzieren.) Kern der testgetriebenen Entwicklung sind die Dateien catch.h, sowie TreeTest.cpp, iiber
die die ausfiihrlichen Unit-Tests bereitgestellt werden. Sie diirfen diese beiden Dateien, sowie die friend-
Deklarationen in den Klassen, nicht verdndern! Als Vorlage werden Thnen wieder die erforderlichen .h

und .cpp Dateien zur Verfiigung gestellt, die Sie z.B. in VisualStudio importieren kénnen.

1.2.3 Verstandnisfragen

Beantworten Sie folgende Fragen nach erfolgreicher Implementierung:

¢ Die m_NodeChronologicallD eignet sich nicht als Positionsangabe. Warum? Wie wiirde sich das

auf den Baum auswirken?
e Die Erstellung und Verwendung der m_NodeOrderID ist nicht unproblematisch. Warum?
e Was wiirde passieren, wenn die m_NodeOrderID mehrfach vergeben wird?

e Welche Interpretation lassen die sortierten Daten spéter zu? Was konnten Sie aus den Zusam-

menhéngen schlieflen?
e Kennen Sie eine Datenstruktur, die sich fiir eine solche Aufgabe besser eignen wiirde?

e Wie kann man die Level-, In-, Pre-, Postorder Ausgabe iiberpriifen?

1.2.4 Losungshinweise
Klassen, Methoden und Attribute

e Der Baum Tree und die Knoten/Blitter TreeNodes sind je eigenstindige Klassen, die nicht

untereinander vererben.

e Erstellen Sie fiir die Klasse Tree einen Destruktor, der die Datenstruktur verniinftig aufréumt und

16scht. Tipp: Sie kénnen rekursive Funktionen bzw. eine mod. Traversierungsmethode nutzen.

e Die m_NodeChronologicallD ist eine fortlaufende Seriennummer fiir jeden Node, die beim Anlegen eines neuer

Datensatzes einmalig vergeben wird und die Einfiige-Reihenfolge nachvollziehbar macht.

e Die m_NodeOrderID ist eine errechnete Positionsangabe fiir jeden Node, die beim Anlegen eines neuen

Datensatzes einmalig vergeben wird und aus dem m_Age, dem m_Income und der m_PostCode

des Datensatzes errechnet wird. Zweck ist die korrekte Platzierung im Baum.

e Nutzen Sie die Datenkapselung und schiitzen Sie alle Attribute vor Zugriff. Erstellen Sie Set-

ter/Getter, wenn es sinnvoll ist.

e Der Tree besitzt einen Pointer m_anker auf den ersten TreeNode. Ist der Baum leer, muss

dieser Pointer auf den Nullpointer zeigen.

10

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

e Alle TreeNodes haben zwei Zeiger vom Typ TreeNode, die auf die nachfolgenden linken /rechten

FH AACHEN

Knoten vom Datentyp TreeNode verweisen. Gibt es keine Nachfolger, so miissen die Referenzen

auf den Nullpointer verweisen.

e Verdeutlichung der UML Parameterfolge von Klasse Tree (siche Abbildung :

addNode(string Name,int Age, double Income, int PostCode), kein Riickgabewert

deleteNode(int NodeOrderID), bool Riickgabewert entsprechend true oder false

— searchNode(string Name), bool Riickgabewert entsprechend true oder false

printAll(void), kein Riickgabewert
— levelOrder(void), kein Riickgabewert (Ausgabe der Knoten)
e Verdeutlichung der UML Parameterfolge der Klasse TreeNode (siehe Abbildung :
— TreeNode(int NodeOrderID, int NodeChronologicallD, string Name, int Age, double Income,
int PostCode), Konstruktor der Klasse
— print(void), kein Riickgabewert
— Getter/Setter wie beschrieben

Baum-Operationen

e Das Einfiigen eines neuen Knotens vom Datentyp TreeNode erfolgt anhand der errechneten
Positionsangabe (m-NodeOrderID). Laufen Sie ab der Wurzel die bestehenden TreeNodes ab,
vergleichen Sie die Positionsangabe und wechseln in deren Abh#ngigkeit dann in den linken oder
rechten Teilbaum. Sie kénnen davon ausgehen, dass der Benutzer nur giiltige Werte eingibt, die

nicht zu einer Mehrfachvergabe der m_NodeOrderID fiihren.

e Bei der Suchfunktion soll nach dem Namen einer Person gesucht werden und alle zugehorigen
Daten ausgegeben werden. Beachten Sie hierbei, dass m_Name kein eindeutiges Schliisselelement
ist und es mehrere Datensétze mit dem Personennamen z.B. ,,Schmitt“ geben kann. Sie miissen
alle passenden Eintréige finden und ausgeben. Uberlegen Sie, ob hier eine rekursive oder iterativer

Vorgehensweise besser ist.

e Loschen eines vorhandenen Datensatzes ist die anspruchsvollste Operation im Bindrbaum. Haben
Sie die Position des TreeNodes im Tree ausgemacht, miissen Sie auf folgende 4 Fille richtig
reagieren. Der zu l6schende TreeNode...

1. ... ist die Wurzel.

2. ... hat keine Nachfolger.

3. ... hat nur einen Nachfolger (rechts oder links).
4. ... hat zwei Nachfolger.

11

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

Vorgabe: verwenden Sie bei Liéschoperationen mit zwei Nachfolgern das Verfahren

FH AACHEN

"Minimum des rechten Teilbaums’. Siehe Vorlesung zum Bindrbaum. Denken Sie dar-
an, dass Sie bei einer Loschoperation auch immer die Referenz des Vorgéngers auf die neue

Situation umstellen miissen.

o Die erwartete Funktionalitdt der Methoden aus Bild [5| ergibt sich aus der Benennung. Erweitern

Sie die Klassen um eigene Methoden und Attribute wenn es zwingend erforderlich ist.
e Sie miissen den Baum nicht ausbalancieren.

¢ Die Klasse zum Knoten TreeNode darf keine Referenz zum Vorgéngerknoten enthalten. Dadurch

wiirde ihre Implementierung komplizierter werden.

e Die Attribute der Klasse TreeNode diirfen keine Referenz zum Vorgéngerknoten enthalten.

Eingabe der Daten

e Manuelle Eingabe - Wie im Schaubild oben zu erkennen soll der Benutzer {iber die Konsole einen
neuen Datensatz anlegen konnen. Dabei werden die benétigten Positionen der Reihe nach als

Benutzereingabe aufgenommen.

e CSV-Datei - Um einen schnelleren Import zu ermoglichen, soll der Benutzer auch eine CSV
Datei einlesen kénnen. Dieser Teil wird Thnen als Funktion in der main.cpp fertig zur Verfiigung
gestellt. Beachten Sie dabei folgende Punkte:

— Die CSV Datei “ExportZielanalyse.csv® liegt im gleichen Verzeichnis wie das Programm.
Sie miissen dem Benutzer keine andere Datei zur Auswahl geben oder eine Eingabe fiir
den Dateinamen realisieren. Fragen Sie lediglich, ob die Datei mit dem Namen wirklich

importiert werden soll.

— Die Reihenfolge der Spalten in der CSV Datei, entspricht der manuellen Eingabe (siche
Beispiel oben).

— Der CSV Import darf die bereits vorhandenen, manuell eingetragenen, Datenséitze nicht

iiberschreiben, sondern nur den Tree damit erweitern.

Ausgaben und Benutzerinteraktion

e Funktionen zur Realisierung des Meniis diirfen nicht Teil der Klasse sein. Schreiben Sie diese

separat in Threr main.cpp.
e Ubernehmen Sie das Menii aus dem Beispiel oben.
e Fehlerhafte Eingaben im Menii miissen abgefangen werden.

e Bei fehlgeschlagenen Operationen wird eine Fehlermeldung erwartet.

12

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

FH AACHEN

e Die Ausgabe des gesamten Baums (alle TreeNode Daten, siehe Beispiel) soll nach der aus-

gewihlten Traversierungsmethode erfolgen.

e Formatieren Sie die Ausgaben sinnvoll (siehe Beispiel).

13

	Praktikum 1: Ringpuffer und Binärbaum
	Backup mittels Ringpuffer
	Grundidee
	Aufgabenstellung
	Testgetriebene Entwicklung
	Lösungshinweise

	Binärbaum - Datenhaltung und Operation
	Aufgabenstellung
	Testgetriebene Entwicklung
	Verständnisfragen
	Lösungshinweise

