FH Aachen

Fachbereich . %
Elektrotechnik und ADS Praktikum SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl I

2 Praktikum 2: Sortierverfahren / Hashing

Thre Vorgesetzten bei der Firma “Data Fuse Inc.” sind begeistert von Thren Fahigkeiten! Da die
Verarbeitungsgeschwindigkeit der enormen Datenmengen weiter optimiert werden muss, wurden Sie
beauftragt ein Framework zur Messung von Laufzeiten zu entwickeln. Mit Hilfe dieses Programms
sollen Sie anschlieflend die Ausfithrungsdauer verschiedener Sortieralgorithmen in Abh#ngigkeit einer
Problemgréfie n untersuchen und auswerten. Da exakte Zeitmessungen in C/C++ nicht trivial sind,
brauchen Sie dies nicht selber zu implementieren. Stattdessen sollen Sie OpenMP nutzen, um die
Zeiten zu messen (Vorteil: einheitlich und einfache Nutzung). Im zweiten Teil der Aufgabe soll eine

einfache Hashtabelle implementiert werden.

2.1 Teilaufgabe 1

Fiir alle Aufgaben gilt, dass Sie hierzu die Vorlage aus ILIAS benutzen koénnen, in der bereits der
Programmrumpf sowie ein Benchmarkaufruf fiir einen Sortieralgorithmus exemplarisch implemen-
tiert sind. Sie diirfen aber auch gerne eine komplett eigene Losung erstellen, bzw. die Vorlage Ihren

Wiinschen geméifl anpassen.

1. Vervollstédndigen Sie die Sortieralgorithmenbibliothek, bestehend aus der Header-Datei sorting.h
und implementieren Sie die folgenden Algorithmen in der zugehorigen cpp-Datei sorting.cpp

sowie im eigenen Namespace sorting:

e Heapsort

e Mergesort Verwenden Sie hier bitte fiir die Merge-Methode den Algorithmus aus der Vor-

lesung

e Natiirlicher Mergesort

Der Unterschied zwischen Mergesort und natiirlichem Mergesort besteht im ersten Schritt-
bei der rekursiven Aufteilung in verschiedene Teillisten. Der normale Mergesort unterteilt
die gesamte Zahlenmenge bis Teillisten der Grofle 1 und setzt diese dann rekursiv wieder
zusammen, wiahrend dabei sortierte Teilfolgen gemischt und dadurch sortiert werden.

Der natiirliche Mergesort unterteilt nicht die gesamte Zahlenmenge in Teillisten der Grofie
1, sondern erkennt bereits vorsortierte Teilfolgen (sogenannte runs) und unterteilt die Teil-
listen in diese runs. Sobald dies geschehen ist, setzt der natiirliche Mergesort die Teillisten
auf dhnliche Weise wieder zusammen wie der normale Mergesort. In |1 und [3]ist der Unter-
schied bei einer gleichen Zahlenmenge erkennbar. Wichtiger Hinweis! Sie brauchen den
Natural Mergesort nicht effizient fiir sehr grofle Zahlenmengen implementieren
(Kein Benchmarktest). Allerdings muss Ihr Algorithmus korrekt arbeiten und

die Unit-Test erfolgreich bestehen (kleine Daten richtig sortieren).

e Quicksort
Evaluieren Sie ihren personlichen Cross-Over Point ab welchem ng Insertion Sort schneller

sortiert als Quicksort. Stellen Sie ihre Laufzeit-Messergebnisse zu Quicksort und Insertion

FH Aachen

Fachbereich ADS Praktikum

Elektrotechnik und) . SS 2024 ¢

Informationstechnik Pl"Of Dlpl—IDf IIlgI’ld SChOll gél
Mergesort

[1,3,2,3,4,7,6,2]

Rekursiver Tellungsaufruf /,// \\“\ Rekursiver Teilungsaufruf
X Y
[1,3,2,3] [4,7,6,2]
‘// \\‘ ‘//
[1,3] (2,3] [4,7] [6,2]
N\ /N / \._ /N
"4 " ,c’/ o ¥ X v \1
[1] [3] [2] (31 [4] [7] [6] [2]
.\\\ Merge /" \ Merge / \ MEFEV \\\Mergj Listen haben GréRe 1,
"4 ¥ N ¥ P "\ Sortierung kann starten
[1,3] [2,3] [4,7] [2,6]
‘\\ Merge e \\ Merge //’
R X b} ‘/’//

Merge

[1,2,2,3,3,4,6,7]

[1,2,3,3] [2,4,6,7]

Abbildung 1: Mergesort

Function MERGE_SORT(A,B,left,right)
if left < right then

middle <- (left + right)/2
MERGE_SORT(A,B,left,middle)
MERGE_SORT(A,B,middle + 1,right)
MERGE(A,B,left,middle + 1, right)
endif

end

Abbildung 2: Pseudocode Mergesort

Sort in einer Grafik dar. Die x-Achse skalieren Sie bitte mit n € [1,2 % ng.

Schreiben Sie eine neue Methode, in der fiir alle Teilfolgen, die weniger als ng Elemente
haben, Insertion Sort verwendet wird und fiir alle Teilfolgen, die gleich oder mehr Elemente
als ng haben, der Quicksort-Algorithmus angewendet wird. Verwenden Sie fiir Quicksort die
optimierte Version, dabei ist das Pivot-Element der Median vom 1., mittleren und letztem

Element der Teilfolge.
e Shellsort mit der Hibbard Folge (H; = 2H,;_; + 1)
e Shellsort mit der Abstandsfolge (H; =3H;_1 + 1)
e Freiwillig: Figene Ideen zu Sortieralgorithmen als Vergleich.

2. Erstellen bzw. vervollstdndigen Sie das Hauptprogramm. Im Hauptprogramm sollen die zu mes-

senden Sortieralgorithmen mit einer entsprechenden Problemgrofie n aufgerufen und die Ergeb-

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

FH AACHEN

Natural Mergesort

[1,3,2,3,4,7,6,2]

Runs bestimmen) . .
. v 2 | £

[1,3] [2,3,4,7] [61 [2]
Runs iterativ mergen 4 ¥ 4 L4
[1,2,3,3,4,7] [2,6]
A

Runs iterativ mergen

[1,22,3,3,4,6,7]
Abbildung 3: Natiirlicher Mergesort

nisse der Zeitmessungen in Textdateien geschrieben werden.
. Messen Sie anschlieffend die Ausfithrungszeiten in Abhéingigkeit der Problemgrofie n fiir:

e Heapsort, n = 1000 : 1000 : 1000000
e Mergesort, n = 1000 : 1000 : 1000000
e Quicksort, n = 1000 : 1000 : 1000000
e Shellsort, n = 1000 : 1000 : 1000000

wobei n. = 1000 : 1000 : 1000000 bedeutet, dass Sie bei der Problemgréfie n = 1000 beginnen und
die Problemgrofle in jedem Schritt um 1000 erhdhen bis Sie bei 1000000 angekommen sind. Nach
jedem Schritt wird die Ausfithrungszeit fiir diese Problemgréfie in eine Textdatei geschrieben.
Messen Sie nicht die Gesamtlaufzeit! Initialisieren Sie Thre Datenstrukturen vor jeder Messung
neu mit Zufallszahlen (Integer). Wiederholen Sie ihre Messung 10-mal fiir das gleiche n und

berechnen Sie den Mittelwert aus den 10 Laufzeitmessungen.

. Stellen Sie ihre Messergebnisse unter Zuhilfennahme von MATLAB, Octave oder GNUPLOT
grafisch dar (Beispiele: siehe Abschnitt . Entsprechen die Messergebnisse den Erwartungen
(z.B. bzgl. O-Notation)? Achten Sie bei den Plots auf aussagekriftige Achsenbeschriftungen und
eine verniinftige Legende. Integrieren Sie ggf. eine mat. Fkt., die ihre Laufzeit moglichst gut

approximiert.

. Beachten Sie unbedingt die Losungshinweise (s. Abschnitt und planen Sie gentiigend Zeit

fiir die Messungen ein.

. Alle Beispiele (Textausgaben, Codevorlagen, Plots,...) dienen der Illustration und diirfen gerne

entsprechend Thren eigenen Vorstellungen angepasst werden.

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

FH AACHEN

2.2 Teilaufgabe 2

Implementieren Sie eine Hash-Tabelle als Array, in dem Sie die Vorlage hashtable.h bzw. hashtable.cpp

vervollstdndigen. Implementieren Sie folgende Features:

1. Konstruktor:
Beim Erzeugen einer Klasseninstanz soll ein entsprechend dem iibergebenen Parameter dimen-
sionierter vector<int> dynamisch auf dem Heap allokiert und mit dem Wert —1” initialisiert
werden. Die Grofle der Hashtabelle wird mit dem iibergebenen Wert initialisiert, der Kollisi-

onszihler und die Anzahl der gespeicherten Elemente sollten mit 0 initialisiert werden.

2. Destruktor:
Stellen Sie sicher, dass jeglicher zur Laufzeit dynamisch allokierter Speicher bei Loschen des

Objektes wieder freigegeben wird.

3. Einfiigen in die Hashtabelle:
Implementieren Sie die Funktion HashTable::insert(int item) zum Einfiigen eines neuen
FElementes mit dem Wert item. Priifen Sie vor dem FEinfiigen,ob die Tabelle theoretisch zu voll
wird d.h. der Belegungsfaktor erreicht wird. Ist dies der Fall soll vor dem Einfiigen ein Rehashing
durchgefithrt werden. Bei erfolgreichem Einfiigen soll der Z#hler fiir die Anzahl der Elemente

erhoht werden.

4. Berechnung des Hashindex:
Implementieren Sie die Methode HashTable: :hashValue(int item), die den Hash-Index h;(x)
berechnet. Ubergeben Sie der Methode den Schliissel. Tritt eine Kollision auf, so soll der Kol-
lisionszéhler erhoht werden. Zur Kollisionsvermeidung soll zwischen linearem und quadrati-
schem Sondieren, sowie doppeltem Hashing als Strategie gewéhlt werden konnen. Die aus-
zufithrende Methode wird im Konstruktor bei der Erstellung der Hashtabelle mit der Variable
m_sondierMethode vorgegeben. (M ist die Grofie der Hashtabelle):

Lineares Sondieren:

hi(z) = (z +) %M (1)
Quadratisches Sondieren:
hi(z) = (z + i) %M (2)
Doppeltes Hashing:
hi(z) = (z +i(R — 2%R)) %M (3)

5. Rehashing:
Falls die Hash-Tabelle einen Belegungsfaktor 8 > 0.6 hat, soll vor dem Einfiigen ein auto-
matisches Rehashing durchgefiihrt werden. Dazu soll eine neue Hashtabelle erzeugt werden mit
der GroBle Mpey > 2 % Myyy und My, sei die néchst groflere Primzahl. Es soll eine maxima-

le Tabellengréfle von 1000 angenommen werden. Sie kénnen somit alle Primzahlen bis 1000 in

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und

Informationstechnik

Prof. Dipl.-Inf. Ingrid Scholl

FH AACHEN
ol

o
i
[}
=
ol
A
o

SS 2024 &

>
=
Il
4
i}
2
z
=

einem Vektor vorab initialisieren. Alle Werte von der alten Hashtabelle miissen mit der neuen

Hashfunktion (die ja von der TabellengroBe abhéingt) iibertragen bzw. sequenziell von der alten

Hashtabelle ausgelesen und in die neue Hashtabelle eingefiigt werden. Der Speicher der alten

Hashtabelle soll wieder frei gegeben werden.

6. Nachdem die Unittests erfolgreich durchgelaufen sind, erzeugen Sie in IThrem Hauptprogramm
eine Hashtabelle der Grofie 1000 mit Kollisionsstrategie ihrer Wahl. Fiigen Sie automatisch 200
Zufallszahlen ein, die im Wertebereich von 1000 bis 1500 liegen und geben Sie die Anzahl der

Kollisionen auf der Konsole aus.

HashTable

- size: int

- elements: int

- collisionCount: int

- threshhold rehashing: double
- m_sondierMethode: int

- hashTable: vector<int>*

+ HashTable(int, double, int)
+ ~HashTable()

+ insert(int): int

+ at(int): int

+ getCollisionCount(): int

+ getSize(): int

+ getElements(): int

+ print(): void

- hashValue(int): int

- rehashing(): void

Abbildung 4: UML-Klassendiagramm hashtable.h

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

FH AACHEN

2.3 Losungshinweise

2.3.1 Allgemeine Hinweise zur Zeitmessung

e Kompilieren Sie Ihr Projekt vor der Messung unbedingt im RELEASFE Modus und verwenden
Sie das Compilerflag /Oz in Visual Studio oder -O8 bei Verwendung des gcc, um eine maximale

Performance zu erhalten.

e Deaktivieren Sie alle unnétigen Konsolenausgaben fiir die Messungen, da diese sehr viel Zeit

kosten.

e Beenden Sie alle anderen Anwendungen (Browser, E-Mail-Client, Antivirus, etc.....), da diese

das Ergebnis ebenfalls drastisch verfilschen kénnen!

e Achten Sie ebenfalls darauf, dass Sie nur die reine Sortier-/Ausfiihrungszeit messen, und nicht

zB. das Erzeugen der Zufallszahlen mitmessen.

2.3.2 Format der TXT-Dateien

Erzeugen Sie fiir jeden gemessenen Algorithmus eine eigene Textdatei. Die Messungen sollten tabula-
torgetrennt spaltenweise abgespeichert werden, damit sie moglichst einfach geplottet werden kénnen.

Ein Auszug aus der Datei ”quicksort.txt“ konnte dann beispielsweise wie folgt aussehen:

e 1.Spalte: Problemgréfie n

e 2.Spalte: Berechnungsdauer in s

Beispiel:

986000 6.3498632997e-02

3 987000 6.3852430001e-02

988000 6.3209023996e-02

2.3.3 Beispiele zum Plotten mit MATLAB / GNUPLOT / Octave

e MATLAB
Erzeugen Sie im selben Ordner, indem sich Thre Messungen befinden, eine M-Skript-Datei mit

einem beliebigen Namen, z.B. make_plots.m:

1 clear;clc;close all;
2

3 fid=fopen('quicksort.txt');

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und .) SS 2024 ¢
Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl :

FH AACHEN

data=textscan(fid,'%d %f');
fclose(fid);

¢ x=data{1};

7 quicksort_y=data{2};

ot

o fid=fopen('mergesort.txt');
10 data=textscan(fid, '%d %f')
11 fclose(fid);

12 mergesort_y=data{2};

14 fid=fopen('heapsort.txt');
15 data=textscan(fid,'’%d %f');
16 fclose(fid);

17 heapsort_y=data{2};

1o fid=fopen('shellsort.txt');
20 data=textscan(fid,'%d %f');
o1 fclose(£fid);

2> shellsort_y=data{2};

25 figure;

26 title('sorting algorithms') ;
27 xlabel('n [-1");

23 ylabel('t [s]');

29 hold on;

30 plot(x,quicksort_y);

s1 plot(x,mergesort_y) ;

32 plot(x,heapsort_y);

33 plot(x,shellsort_y);

31 legend('quicksort', 'mergesort', 'heapsort', 'shellsort', 'Location', 'northwest');
35 hold off;

Fiihren Sie das Skript anschlieflend aus:

1 >> make_plots

e GNUPLOT
Erzeugen Sie im selben Ordner, indem sich Thre Messungen befinden, eine Datei mit einem

beliebigen Namen, z.B. plots.gnu:

1 reset

set autoscale x

V]

FH Aachen

Fachbereich ADS Praktikum
Elektrotechnik und)) SS 2024 ¢
Informationstechnik Prof. Dlpl.—Inf. Ingrld Scholl ;

FH AACHEN

3 set autoscale y

1 set xlabel "n [-]"
5 set ylabel "t [s]"
¢ set key top left

s plot \

o "quicksort.txt" with linespoints title 'Quicksort',\
10 "mergesort.txt" with linespoints title 'Mergesort',\
11 "shellsort.txt" with linespoints title 'Shellsort',\

12 "heapsort.txt" with linespoints title 'Heapsort',\

Starten Sie nun Gnuplot, wechseln Sie in das korrekte Verzeichnis, und fuehren Sie das Skript

wie folgt aus:

1 $ cd 'pfad-zum-gnuplot-skript'
2 $§ load "plots.gnu"

Weiterfithrende Befehle zu GNUPLOT findet man z.B. hier:
http://gnuplot.sourceforge.net/docs_4.0/gpcard.pdf

2.3.4 Beispielplots

Die Plots sollten, natiirlich in Abhéngigkeit der verwendeten CPU, in etwa so aussehen (in den Ab-

bildungen wurden die Legenden anonymisiert um die Ergebnisse nicht vorweg zu nehmen):

0.16 T T T T T T T T
Algol ——

0.14 | Algo2 —X—

’ Algo3 —X%—

Algo4 —H+—

0.12

0.1

0.08

t [s]

0.06

0.04

0.02

100000 200000 300000 400000 500000 600000 700000 800000 900000 1x10°
n[-]

Abbildung 5: Laufzeitvergleich der Sortieralgorithmen

http://gnuplot.sourceforge.net/docs_4.0/gpcard.pdf

	Praktikum 2: Sortierverfahren / Hashing
	Teilaufgabe 1
	Teilaufgabe 2
	Lösungshinweise
	Allgemeine Hinweise zur Zeitmessung
	Format der TXT-Dateien
	Beispiele zum Plotten mit MATLAB / GNUPLOT / Octave
	Beispielplots

