
FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

2 Praktikum 2: Sortierverfahren / Hashing

Ihre Vorgesetzten bei der Firma “Data Fuse Inc.” sind begeistert von Ihren Fähigkeiten! Da die

Verarbeitungsgeschwindigkeit der enormen Datenmengen weiter optimiert werden muss, wurden Sie

beauftragt ein Framework zur Messung von Laufzeiten zu entwickeln. Mit Hilfe dieses Programms

sollen Sie anschließend die Ausführungsdauer verschiedener Sortieralgorithmen in Abhängigkeit einer

Problemgröße n untersuchen und auswerten. Da exakte Zeitmessungen in C/C++ nicht trivial sind,

brauchen Sie dies nicht selber zu implementieren. Stattdessen sollen Sie OpenMP nutzen, um die

Zeiten zu messen (Vorteil: einheitlich und einfache Nutzung). Im zweiten Teil der Aufgabe soll eine

einfache Hashtabelle implementiert werden.

2.1 Teilaufgabe 1

Für alle Aufgaben gilt, dass Sie hierzu die Vorlage aus ILIAS benutzen können, in der bereits der

Programmrumpf sowie ein Benchmarkaufruf für einen Sortieralgorithmus exemplarisch implemen-

tiert sind. Sie dürfen aber auch gerne eine komplett eigene Lösung erstellen, bzw. die Vorlage Ihren

Wünschen gemäß anpassen.

1. Vervollständigen Sie die Sortieralgorithmenbibliothek, bestehend aus der Header-Datei sorting.h

und implementieren Sie die folgenden Algorithmen in der zugehörigen cpp-Datei sorting.cpp

sowie im eigenen Namespace sorting :

� Heapsort

� Mergesort Verwenden Sie hier bitte für die Merge-Methode den Algorithmus aus der Vor-

lesung

� Natürlicher Mergesort

Der Unterschied zwischen Mergesort und natürlichem Mergesort besteht im ersten Schritt-

bei der rekursiven Aufteilung in verschiedene Teillisten. Der normale Mergesort unterteilt

die gesamte Zahlenmenge bis Teillisten der Größe 1 und setzt diese dann rekursiv wieder

zusammen, während dabei sortierte Teilfolgen gemischt und dadurch sortiert werden.

Der natürliche Mergesort unterteilt nicht die gesamte Zahlenmenge in Teillisten der Größe

1, sondern erkennt bereits vorsortierte Teilfolgen (sogenannte runs) und unterteilt die Teil-

listen in diese runs. Sobald dies geschehen ist, setzt der natürliche Mergesort die Teillisten

auf ähnliche Weise wieder zusammen wie der normale Mergesort. In 1 und 3 ist der Unter-

schied bei einer gleichen Zahlenmenge erkennbar.Wichtiger Hinweis! Sie brauchen den

Natural Mergesort nicht effizient für sehr große Zahlenmengen implementieren

(Kein Benchmarktest). Allerdings muss Ihr Algorithmus korrekt arbeiten und

die Unit-Test erfolgreich bestehen (kleine Daten richtig sortieren).

� Quicksort

Evaluieren Sie ihren persönlichen Cross-Over Point ab welchem n0 Insertion Sort schneller

sortiert als Quicksort. Stellen Sie ihre Laufzeit-Messergebnisse zu Quicksort und Insertion

1

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

Abbildung 1: Mergesort

Function MERGE_SORT(A,B,left,right)

if left < right then

middle <- (left + right)/2

MERGE_SORT(A,B,left,middle)

MERGE_SORT(A,B,middle + 1,right)

MERGE(A,B,left,middle + 1, right)

endif

end

Abbildung 2: Pseudocode Mergesort

Sort in einer Grafik dar. Die x-Achse skalieren Sie bitte mit n ∈ [1, 2 ∗ n0].

Schreiben Sie eine neue Methode, in der für alle Teilfolgen, die weniger als n0 Elemente

haben, Insertion Sort verwendet wird und für alle Teilfolgen, die gleich oder mehr Elemente

als n0 haben, der Quicksort-Algorithmus angewendet wird. Verwenden Sie für Quicksort die

optimierte Version, dabei ist das Pivot-Element der Median vom 1., mittleren und letztem

Element der Teilfolge.

� Shellsort mit der Hibbard Folge (Hi = 2Hi−1 + 1)

� Shellsort mit der Abstandsfolge (Hi = 3Hi−1 + 1)

� Freiwillig: Eigene Ideen zu Sortieralgorithmen als Vergleich.

2. Erstellen bzw. vervollständigen Sie das Hauptprogramm. Im Hauptprogramm sollen die zu mes-

senden Sortieralgorithmen mit einer entsprechenden Problemgröße n aufgerufen und die Ergeb-

2

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

Abbildung 3: Natürlicher Mergesort

nisse der Zeitmessungen in Textdateien geschrieben werden.

3. Messen Sie anschließend die Ausführungszeiten in Abhängigkeit der Problemgröße n für:

� Heapsort, n = 1000 : 1000 : 1000000

� Mergesort, n = 1000 : 1000 : 1000000

� Quicksort, n = 1000 : 1000 : 1000000

� Shellsort, n = 1000 : 1000 : 1000000

wobei n = 1000 : 1000 : 1000000 bedeutet, dass Sie bei der Problemgröße n = 1000 beginnen und

die Problemgröße in jedem Schritt um 1000 erhöhen bis Sie bei 1000000 angekommen sind. Nach

jedem Schritt wird die Ausführungszeit für diese Problemgröße in eine Textdatei geschrieben.

Messen Sie nicht die Gesamtlaufzeit! Initialisieren Sie Ihre Datenstrukturen vor jeder Messung

neu mit Zufallszahlen (Integer). Wiederholen Sie ihre Messung 10-mal für das gleiche n und

berechnen Sie den Mittelwert aus den 10 Laufzeitmessungen.

4. Stellen Sie ihre Messergebnisse unter Zuhilfennahme von MATLAB, Octave oder GNUPLOT

grafisch dar (Beispiele: siehe Abschnitt 2.3.4). Entsprechen die Messergebnisse den Erwartungen

(z.B. bzgl. O-Notation)? Achten Sie bei den Plots auf aussagekräftige Achsenbeschriftungen und

eine vernünftige Legende. Integrieren Sie ggf. eine mat. Fkt., die ihre Laufzeit möglichst gut

approximiert.

5. Beachten Sie unbedingt die Lösungshinweise (s. Abschnitt 2.3) und planen Sie genügend Zeit

für die Messungen ein.

6. Alle Beispiele (Textausgaben, Codevorlagen, Plots,...) dienen der Illustration und dürfen gerne

entsprechend Ihren eigenen Vorstellungen angepasst werden.

3

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

2.2 Teilaufgabe 2

Implementieren Sie eine Hash-Tabelle als Array, in dem Sie die Vorlage hashtable.h bzw. hashtable.cpp

vervollständigen. Implementieren Sie folgende Features:

1. Konstruktor:

Beim Erzeugen einer Klasseninstanz soll ein entsprechend dem übergebenen Parameter dimen-

sionierter vector<int> dynamisch auf dem Heap allokiert und mit dem Wert −1” initialisiert

werden. Die Größe der Hashtabelle wird mit dem übergebenen Wert initialisiert, der Kollisi-

onszähler und die Anzahl der gespeicherten Elemente sollten mit 0 initialisiert werden.

2. Destruktor:

Stellen Sie sicher, dass jeglicher zur Laufzeit dynamisch allokierter Speicher bei Löschen des

Objektes wieder freigegeben wird.

3. Einfügen in die Hashtabelle:

Implementieren Sie die Funktion HashTable::insert(int item) zum Einfügen eines neuen

Elementes mit dem Wert item. Prüfen Sie vor dem Einfügen,ob die Tabelle theoretisch zu voll

wird d.h. der Belegungsfaktor erreicht wird. Ist dies der Fall soll vor dem Einfügen ein Rehashing

durchgeführt werden. Bei erfolgreichem Einfügen soll der Zähler für die Anzahl der Elemente

erhöht werden.

4. Berechnung des Hashindex:

Implementieren Sie die Methode HashTable::hashValue(int item), die den Hash-Index hi(x)

berechnet. Übergeben Sie der Methode den Schlüssel. Tritt eine Kollision auf, so soll der Kol-

lisionszähler erhöht werden. Zur Kollisionsvermeidung soll zwischen linearem und quadrati-

schem Sondieren, sowie doppeltem Hashing als Strategie gewählt werden können. Die aus-

zuführende Methode wird im Konstruktor bei der Erstellung der Hashtabelle mit der Variable

m sondierMethode vorgegeben. (M ist die Größe der Hashtabelle):

Lineares Sondieren:

hi(x) = (x+ i)%M (1)

Quadratisches Sondieren:

hi(x) = (x+ i2)%M (2)

Doppeltes Hashing:

hi(x) = (x+ i(R− x%R))%M (3)

5. Rehashing:

Falls die Hash-Tabelle einen Belegungsfaktor ß > 0.6 hat, soll vor dem Einfügen ein auto-

matisches Rehashing durchgeführt werden. Dazu soll eine neue Hashtabelle erzeugt werden mit

der Größe Mneu > 2 ∗ Malt und Mneu sei die nächst größere Primzahl. Es soll eine maxima-

le Tabellengröße von 1000 angenommen werden. Sie können somit alle Primzahlen bis 1000 in

4

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

einem Vektor vorab initialisieren. Alle Werte von der alten Hashtabelle müssen mit der neuen

Hashfunktion (die ja von der Tabellengröße abhängt) übertragen bzw. sequenziell von der alten

Hashtabelle ausgelesen und in die neue Hashtabelle eingefügt werden. Der Speicher der alten

Hashtabelle soll wieder frei gegeben werden.

6. Nachdem die Unittests erfolgreich durchgelaufen sind, erzeugen Sie in Ihrem Hauptprogramm

eine Hashtabelle der Größe 1000 mit Kollisionsstrategie ihrer Wahl. Fügen Sie automatisch 200

Zufallszahlen ein, die im Wertebereich von 1000 bis 1500 liegen und geben Sie die Anzahl der

Kollisionen auf der Konsole aus.

Abbildung 4: UML-Klassendiagramm hashtable.h

5

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

2.3 Lösungshinweise

2.3.1 Allgemeine Hinweise zur Zeitmessung

� Kompilieren Sie Ihr Projekt vor der Messung unbedingt im RELEASE Modus und verwenden

Sie das Compilerflag /Ox in Visual Studio oder -O3 bei Verwendung des gcc, um eine maximale

Performance zu erhalten.

� Deaktivieren Sie alle unnötigen Konsolenausgaben für die Messungen, da diese sehr viel Zeit

kosten.

� Beenden Sie alle anderen Anwendungen (Browser, E-Mail-Client, Antivirus, etc.....), da diese

das Ergebnis ebenfalls drastisch verfälschen können!

� Achten Sie ebenfalls darauf, dass Sie nur die reine Sortier-/Ausführungszeit messen, und nicht

zB. das Erzeugen der Zufallszahlen mitmessen.

2.3.2 Format der TXT-Dateien

Erzeugen Sie für jeden gemessenen Algorithmus eine eigene Textdatei. Die Messungen sollten tabula-

torgetrennt spaltenweise abgespeichert werden, damit sie möglichst einfach geplottet werden können.

Ein Auszug aus der Datei ”quicksort.txt“ könnte dann beispielsweise wie folgt aussehen:

� 1.Spalte: Problemgröße n

� 2.Spalte: Berechnungsdauer in s

Beispiel:

1 ...

2 986000 6.3498632997e-02

3 987000 6.3852430001e-02

4 988000 6.3209023996e-02

5 ...

2.3.3 Beispiele zum Plotten mit MATLAB / GNUPLOT / Octave

� MATLAB

Erzeugen Sie im selben Ordner, indem sich Ihre Messungen befinden, eine M-Skript-Datei mit

einem beliebigen Namen, z.B. make plots.m:

1 clear;clc;close all;

2

3 fid=fopen('quicksort.txt');

6

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

4 data=textscan(fid,'%d %f');

5 fclose(fid);

6 x=data{1};

7 quicksort_y=data{2};

8

9 fid=fopen('mergesort.txt');

10 data=textscan(fid,'%d %f')

11 fclose(fid);

12 mergesort_y=data{2};

13

14 fid=fopen('heapsort.txt');

15 data=textscan(fid,'%d %f');

16 fclose(fid);

17 heapsort_y=data{2};

18

19 fid=fopen('shellsort.txt');

20 data=textscan(fid,'%d %f');

21 fclose(fid);

22 shellsort_y=data{2};

23

24

25 figure;

26 title('sorting algorithms');

27 xlabel('n [-]');

28 ylabel('t [s]');

29 hold on;

30 plot(x,quicksort_y);

31 plot(x,mergesort_y);

32 plot(x,heapsort_y);

33 plot(x,shellsort_y);

34 legend('quicksort','mergesort','heapsort','shellsort','Location','northwest');

35 hold off;

Führen Sie das Skript anschließend aus:

1 >> make_plots

� GNUPLOT

Erzeugen Sie im selben Ordner, indem sich Ihre Messungen befinden, eine Datei mit einem

beliebigen Namen, z.B. plots.gnu:

1 reset

2 set autoscale x

7

FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

3 set autoscale y

4 set xlabel "n [-]"

5 set ylabel "t [s]"

6 set key top left

7

8 plot \

9 "quicksort.txt" with linespoints title 'Quicksort',\

10 "mergesort.txt" with linespoints title 'Mergesort',\

11 "shellsort.txt" with linespoints title 'Shellsort',\

12 "heapsort.txt" with linespoints title 'Heapsort',\

Starten Sie nun Gnuplot, wechseln Sie in das korrekte Verzeichnis, und fuehren Sie das Skript

wie folgt aus:

1 $ cd 'pfad-zum-gnuplot-skript'

2 $ load "plots.gnu"

Weiterführende Befehle zu GNUPLOT findet man z.B. hier:

http://gnuplot.sourceforge.net/docs 4.0/gpcard.pdf

2.3.4 Beispielplots

Die Plots sollten, natürlich in Abhängigkeit der verwendeten CPU, in etwa so aussehen (in den Ab-

bildungen wurden die Legenden anonymisiert um die Ergebnisse nicht vorweg zu nehmen):

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 100000 200000 300000 400000 500000 600000 700000 800000 900000 1x106

t
[s

]

n [-]

Algo1
Algo2
Algo3
Algo4

Abbildung 5: Laufzeitvergleich der Sortieralgorithmen

8

http://gnuplot.sourceforge.net/docs_4.0/gpcard.pdf

	Praktikum 2: Sortierverfahren / Hashing
	Teilaufgabe 1
	Teilaufgabe 2
	Lösungshinweise
	Allgemeine Hinweise zur Zeitmessung
	Format der TXT-Dateien
	Beispiele zum Plotten mit MATLAB / GNUPLOT / Octave
	Beispielplots

