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Dieses Praktikum beschdftigt sich mit den Inhalten aus der Vorlesung ADS_K'7_Graphenalgorithmen.

4 Praktikum: Graphen

Literaturhinweise: Folien/Videos zu Kapitel 7 / Buch: Algorithmen und Datenstrukturen
Robert Sedgewick

In dieser Aufgabe ist erneut Ihre Kompetenz als Systemarchitekt bei ,,Data Fuse* gefragt. Die verschie-
denen Standorte sollen mit neuen Routern verbunden werden und Sie sollen testen, ob die geplanten
Router und deren Verbindungen ausreichen, um alle Standorte zu verbinden. Um dies zu l6sen, nutzen

Sie Algorithmen der Graphentheorie.

In Abbildung [I] sehen Sie ein Beispiel, wie so ein Graph aufgebaut sein kénnte, die Knoten stellen die
Router an den Standorten dar, die Kanten die Verbindungen mit einem Gewicht als fiktive Entfernung.
Hier ldsst sich schnell erkennen, dass alle Standorte verbunden sind, mit der minimalen Entfernung

wird es hier auf den ersten Blick schon schwieriger.
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Abbildung 1: Beispiel Standorte der Router mit Verbindungen

4.1 Aufgabenstellung

1. Implementieren Sie ein Programm, dass zur Verarbeitung von vorgegebenen Graphen verwen-
det werden soll. Legen Sie dazu eine Graphen- und Knotenklasse nach den unten aufgefithrten
Vorgaben (Klassen: Edge, EdgeWeightedGraph, PrimMST, KruskalMST, DirectedEdge,
EdgeWeightedDigraph und DijkstraSP) an. Folgende Funktionalitéit miissen Sie hier selber

implementieren:

e Ausgabe des Graphen
e Rekursive Tiefensuche

e Iterative Breitensuche
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e Prim (Minimaler Spannbaum)
e Kruskal (Minimaler Spannbaum)

o Kiirzeste Wege nach Dijkstra

Es diirfen weitere Attribute und Methoden hinzugefiigt werden und auch Ubergabeparameter

verindert werden. Begriinden Sie diese Anderungen bei der Abgabe.

2. Implementieren Sie wie schon in den letzten Aufgaben ein Menii zur Auswahl fiir den Benutzer

wie folgt:

Praktikum 5: Graphenalgorithem:

N

1) Graph einlesen

3 2) Tiefensuche

1+ 3) Breitensuche

5 4) MST nach Prim (Eingabe: Startknoten)
¢ 5) MST nach Kruskal

- 6) Kiirzeste Wege nach Dijkstra (Eingabe: Startknoten)
s 7) Ausgabe der Adjazenzliste

0 8) Kante 16schen

10 9) Kante hinzufiigen

11 10)Programm beenden

12 Weiter mit beliebiger Eingabe

13 7>

Bei dem Einlesen des Graphs muss es moglich sein zwischen allen drei Beispielgraphen zu wihlen.

3. Fiir die Berechnung der Minimalen Spannbdume werden gewichtete Graphen bendtigt. Verwen-

den Sie dazu die folgenden Klassen:

e API fiir eine gewichtete und ungerichtete Kante:

1 class Edge {

2 private:
int _either; // ein Knoten der Kante
| int _other; // der andere Knoten der Kante

5 double _weight; // Kantengewicht

7  public:

8 Edge(int v, int w, double weight);

9 int either(); // einer der beiden Knoten
10 int other(int v); // der andere Knoten

11 double weight(); // Gewicht dieser Kante

13 };

e API fiir ungerichteten kantengewichteten Graphen
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1 class EdgeWeightedGraph {

2 private:

3 int V; // Anzahl Knoten von G
4 int E; // Anzahl Kanten von G

6 public:

7 EdgeWeightedGraph(int V) ; // Leerern Graphen mit V Knoten erstellen
8 EdgeWeightedGraph(std: :string fn); // Graph einlesen aus Textdatei

9 int getV(Q); // liefert Anzahl Knoten

10 int getEQ); // liefert Anzahl der Kanten

11 void add(Edge e); // figt Kante e dem Graphen hinzu

12 std::vector<Edge> getAdj(int v); // liefert Array der adjazenten Kanten zu v
13 std: :vector<Edge> edges(); // alle Kanten dieses Graphen

14 bool delEdge(Edge e); // Léscht eine Kante, wenn sie enthalten ist
15

16 };

e API fiir den Minimalen Spannbaum nach Prim:

1 #include <queue>
2 class PrimMST {

3 private:
1 std: :vector<bool> marked; // MST-Knoten
5 std: :vector<Edge> mst; // MST-Kanten

6 std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> pq;;
7 // Menge der Randkanten in PQ, pq.top() liefert kleinste Gewicht

9 public:

10 PrimMST (EdgeWeightedGraph G, int s);

11 void visit(EdgeWeightedGraph G, int v);

12 std: :vector<Edge> edges(); // liefert Kanten des MST

13 double weight(); // berechnet die Gesamtkosten des MST
1

15 };

e API fiir den Minimalen Spannbaum nach Kruskal:

1 class KruskalMST {

2 private:

3 std: :vector<Edge> mst; // MST-Kanten

4 std::vector<int> treelD; // BaumId zu jedem Knoten

6 public:

7 KruskalMST (EdgeWeightedGraph G); // Konstruktor

8 std: :vector<Edge> edges(); // liefert Kanten des MST

9 double weight(); // berechnet Gesamtkosten des MST

Thnen stehen die Grundgeriiste dieser Klassen auf ILTAS zur Verfiigung.

4. Implementieren Sie eine Methode zur Ausgabe des Graphen auf der Konsole als Adja-

zenzliste, wie im Beispiel unten gezeigt.
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A ->B [7] ->D [5]

>B ->A[7] ->C[8] ->0D [9] -> E [7]

C ->B [8 ->E [5]

D ->A[6] ->B[9] ->E [156] ->F [6]

sE >B [7] ->C[6] ->DI[18] ->F [8 ->aG [9]

«F ->D [6] ->E [8] ->G [11]

G —>E [9] ->F [11]

Hinweis: Beispiel erste Zeile: Knoten A hat eine Kante zu Knoten B mit Kosten 7 und zu Knoten
D mit Kosten 5, Fiir die anderen Zeilen gilt entsprechendes. Die Gewichte stehen in den eckigen

Klammern.

5. Uberpriifen Sie mittels Tiefen- oder Breitensuche, ob alle Knoten verbunden sind, also alle

Standorte miteinander kommunizieren konnten.

Implementieren Sie dazu die modifizierte rekursive Tiefensuche nach Folie 54 der Vorlesung
Kapitel 7 Graphenalgorithmen Teil 1 und die iterative Breitensuche nach Folie 66. Verwenden
Sie das marked und edgeTo-Array, um festzustellen ob der Graph zusammenhéngend ist und in
welcher Reihenfolge die Knoten besucht wurden. Geben Sie das Resultat auf der Konsole wie im

folgenden Beispiel aus:

i Tiefensuche (Depth-First-Search (DFS)) - Startknoten: 0

o

Besuchsreihenfolge:
sA->B->C->E->D->F ->G

5 EdgeTo_Array:

¢ A -> -1 (Startknoten)
7B ->0

s C > 1

11 Marked_Array:
12 A -> true (Startknoten)

13 B => true

16 Graph ist zusammenh&ngend

1s Breitensuche (Breadth-First-Search (BFS)) - Startknoten: 0

10 Besuchsreihenfolge:
0A->B->D->C->E ->F ->G

N
¥

EdgeTo_Array:
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23

24

o
25

A -> -1 (Startknoten)
B->0
cC >1

Marked_Array:
A -> true (Startknoten)

B -> true

33 Graph ist zusammenh&ngend

N

Berechnen Sie mittels Prim und Kruskal den minimalen Spannbaum. Geben Sie alle Kan-
ten des Minimalen Spannbaums und die Gesamtkosten fiir beide Algorithmen aus und vergleichen
Sie diese. Priifen Sie durch Zeichnen der Béume, ob ihr Ergebnis stimmt Bei der Berechnung mit
Kruskal soll fiir jede hinzugefiigte Kante die treelD der Knoten ausgegeben werden, dhnlich der
Tabelle [77] Die Ausgabe des MST fiir Prim sollte in Anlehnung an das untenstehende Beispiel

erfolgen:

Minimaler Spannbaum (MST) nach Prim:

Gewicht: 39
Adjazenzliste:

A-> D[5] > BIL7]
B-> E[7]

C-> E [ 5]

D-> F [ 6]

E-> G [ 9]

Berechnen Sie mittels Dijkstra die kiirzesten Wege zu einem von Thnen definierten Start-
knoten. Berechnen Sie den kiirzesten Weg und geben Sie den Pfad beginnend vom Startknoten
auf der Konsole aus - dabei miissen auch die Pfadkosten fiir jeden Knoten ausgegeben werden.

Verwenden Sie die unten vorgegebenen Klassen als Basis.

e API fiir eine gerichtete Kante

1 class DirectedEdge {

2 private:

3 double _weight; // Gewicht der Kante

A int _from; // Index des Startknoten

5 int _to; // Index des Endknoten

6 R

7  public:

8 DirectedEdge (double weight, int from, int to);
9 int from(); // liefert den Startknoten

10 int to(); // liefert den Endknoten
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double weight(); // Gewicht der Kante

API fiir einen gerichteten Digraphen

class EdgeWeightedDigraph {

I8

private:
int V; // Anzahl Knoten von G
int E; // Anzahl Kanten von G

public:
EdgeWeightedDigraph(int V); //
EdgeWeightedDigraph(std: :string fn); //
void add(DirectedEdge e); //
int getV(); //
int getEQ; //
std: :vector<DirectedEdge> getAdj(int v);//

//
// 1

std: :vector<DirectedEdge> edges();
bool delEdge8DirectedEdge e);

API fiir die Kiirzesten Wege nach Dijkstra:

class DijkstraSP {

private:
std: :map<int, DirectedEdge> edgeTo;
std: :vector<double> distToVect;
Utils::PriorityQueue<int> pq;
void relax(EdgeWeightedDigraph G, int v);

public:
DijkstraSP(EdgeWeightedDigraph G, int s);
double distTo(int v);
bool hasPathTo(int v);
std: :vector<DirectedEdge> pathTo(int v);

I3

Beispielausgabe fiir Dijkstra

Knoten i | A B C D E F G
edgeTo[ill - 0 1 0 1 3 5
distTo[ill O 7 155 14 11 22
Kiirzester Weg (Dijkstra):

Start: A

Ziel: G

Pfad: A [5] -> D [6] -> F [11] -> G
Kosten: 22

Leeren Digraphen mit V Knoten erstellen
Graph einlesen aus Textdatei

gerichtete Kante hinzufiigen

liefert Anzahl Knoten

liefert Anzahl der Kanten

liefert Array der adjazenten Kanten zu v
alle Kanten dieses Graphen

O0scht eine Kante, wenn sie enthalten ist

// Map mit Kanten fiir kiirzeste Wege
// Distanzvektor

// Prioritédtswarteschlange (gegeben)
// Relaxation

// Abstande vom Startvertex zu v
// Uberpriift die existens eines Pfades

// Kanten des kiirzsesten Weges
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4.2 Losungshinweise

In den néchsten Abschnitten folgen allgemeine Hinweise zu den Algorithmen, die Ihnen die Program-
mierung erleichtern sollen. Beachten Sie, dass hier nur Hinweise gegeben werden. Gegebene Beispiele

miissen erweitert oder iiberarbeitet und koénnen nicht so iibernommen werden.

4.2.1 Beispielgraphen

Es stehen Thnen drei Graphen als Beispiel zur Verfiigung. Alle Graphen stehen als einfache Textdatei
(graph*.txt) zur Verfiigung. Sie finden den Graph dort als Kantenliste aufgebaut. Die erste Zeile gibt
die Knotenzahl V' und die zweite Zeile die Anzahl der Kanten £ an. In allen folgenden Zeilen sind
die Kanten als Tripel in folgender Form aufgefiihrt: Startknoten v — Endknoten w— Gewicht, wobei
die Knoten mit 0...(V — 1) nummeriert sind. Die Graphen sind ungerichtet und gewichtet. Aufgabe
zum Praktikum: Zeichnen Sie die Graphen, die als Adjazenzliste auf ILTAS vorgegeben werden auf,

damit die Algorithmen im Praktikums-Termin so iiberpriift werden kénnen.

4.2.2 Hinweise Unittests

In dieser Aufgabe helfen Thnen die Unittests wieder bei der Losung. Fiir Tiefen- und Breitensuche
wird erwartet, dass IThr Programm false zuriickliefert, wenn von dem Startknoten nicht alle Knoten

erreicht werden konnten. Es soll hingegen true liefern wenn alle Knoten besucht wurden.

Bei Prim und Kruskal werden die Kosten und Kanten des minimalen Spannbaumes gepriift. Fiir Prim
sind diese bei den ersten beiden Graphen mit beliebigen Startknoten immer gleich. Graph 3 ist nicht
zusammenhéngend und daher sollte ihr Algorithmus abhéingig vom Startknoten verschiedene Ergeb-
nisse liefern. Sorgen Sie dafiir, dass ihr Programm trotzdem zum Ende kommt und die unvollstédndige
Anzahl an Kanten im MST akzeptiert.

Fiir Kruskal gilt im Prinzip genau das gleiche, nur dass es hier keinen Startknoten gibt. Kruskal liefert
bei den ersten beiden Graphen ein eindeutiges Ergebnis. Bei Graph 3, soll er ebenfalls zum Ende

kommen und fiir jeden zusammenhingenden Teilgraphen den MST mit seinen Kosten ausgeben.

4.2.3 Tiefensuche

Die Tiefensuche wurde ihnen in der Vorlesung vorgestellt. Sie sucht zunéichst solange in die Tiefe, bis
kein weiterer Knoten als Kind mehr folgt und geht dann wieder eine Ebene hoher. Verwenden Sie
den modifizierten Algorithmus |1| mit integrierter Pfadsuche fiir die rekursive Tiefensuche (s. Folie 56).
Bei einer Tiefensuche werden alle erreichten Knoten als besucht markiert in dem marked-Array und
im edgeTo-Array werden alle Kanten eingetragen, die zur Traversierung beigetragen haben. Gibt es
Knoten, die nicht durch eine einmalige Tiefensuche erreicht werden kénnen, ist der Graph nicht zusam-
menhingend. Dies kann im marked-Array erkannt werden, falls Knoten nach einmaliger Tiefensuche

noch nicht besucht wurden.
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Algorithm 1: Modifizierte Rekursive Tiefensuche

marked[0..|V — 1|] = false
/* edgeTo speichert letzten Knoten auf Pfad zu
diesem Knoten */
edgeTol0..|V —1]] = —
s = vo und edgeTo[s] =0 /* s ist Startknoten */
DFS(G,s) /* Starten der Pfadsuche */
Function DFS(G,v)
marked[v] = true
for Yw € G.adj(v) do
if marked(w) == false then
edgeTo[w] = v
DFS(G,w)

end

end

Die folgenden Grafiken zeigen die Tiefensuche exemplarisch an einem Baum, fiir einen Graphen funk-

tioniert diese auf die gleiche Weise. Es muss nur beriicksichtigt werden, ob ein Knoten bereits besucht

wurde.
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Schritt 9 Endergebnis

An dem Beispiel wird nun zusétzlich gezeigt, wie sich der Zustand des EdgeTo-Arrays und des Marked-
Arrays in jedem Schritt veréindert. Das Marked-Array speichert, ob ein Knoten bereits besucht wurde.

Die blaue Markierung gibt an, wann der jeweilige Knoten in welchem Schritt besucht wurde.
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Schritt | a b c d e f g h i i

0 false | false | false | false | false | false | false | false | false | false

1 true | false | false | false | false | false | false | false | false | false

2 true | true | false | false | false | false | false | false | false | false

3 true | true | false | true | false | false | false | false | false | false

4 true | true | false | true | true | false | false | false | false | false

5 true | true | false | true | true | false | false | true | false | false

6 true | true | false | true | true | false | false | true | true | false

7 true | true | true | true | true | false | false | true | true | false

8 true | true | true | true | true | true | false | true | true | false

9 true | true | true | true | true | true | false | true | true | true

10 true | true | true | true | true | true | true | true | true | true

Abbildung 2: Zustand des Marked-Array nach jeder Iteration

rot = noch nicht besuchter Knoten

blau = neu besuchter Knoten

griin = besuchter Knoten aus vorherigen Schritten

Zusétzlich wird nun #hnlich wie beim Marked-Array, das EdgeTo-Array angegeben. Das EdgeTo-

Array gibt an, iiber welchen Knoten man zu einem anderen traversieren kann. Dazu wird zunéchst

eine Abbildung von den Knoten in die natiirlichen Zahlen definiert.
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Nun wird iiber den Algorithmus bestimmt, iiber welchen Knoten man zu einem anderen kommt. Da

Abbildung 3: Abbildung Namen < Zahlen

der Knoten a(0) der Startknoten ist, bleibt dieser auf dem Weg -1, s. Abb. 4.

Zum Schluss muss die Abbildung wieder riickgéingig gemacht werden, s. Abb. 5.

10
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Knoten
Schritt | a(0) | b(1) | c(2) | d(3) | e(4) | f(5) | g(6) | h(7)]i(8) | j(9)

0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

al 0 -1 -1 -1 -1 -1 -1 -1 -1

2 -1 i -1 -1 -1 -1 -1 -1

3 -1 1 -1 -1 -1 -1 -1

4 -1 -1 -1 4 -1 -1

5 -1 -1 -1 4 -1

6 0 -1 -1 -1

7 2 -1 -1

8 -1 3

9 2

Abbildung 4: Zustand des EdgeTo-Array nach jeder Iteration

a(0) | b(1) | c(2) | d(3) | e(4)  f(5) | g(6)  h(7) | i(8) | j(9)
-1 0 0 1 1 2 2 4 4 5
(Start) a a b b c c e e f

Abbildung 5: Zustand des EdgeTo-Array nach der rekursiven Tiefensuche

4.2.4 Breitensuche
Im Gegensatz zur Tiefensuche wird hier zunéchst in der Breite gesucht. Das bedeutet zu einem Knoten
werden zunéchst alle Kinder untersucht, bevor man die Kindes-Kinder betrachtet.

Auch hier kénnen Sie sich wieder am Pseudocode aus der Vorlesung in Algorithmus [2] orientieren, s.
Folie 66.

11
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Algorithm 2: Iterative Breitensuche
marked[0..|V — 1|] = false
edgeTol0..|V —1|] = —

S = Vo
Function BFS_it(G,s)
queue q

marked[s] = true
q.enqueue(s)

while (!g.isEmpty()) do
v = q.dequeuel()

if (marked[v]) then
| continue

marked[v] = true
for Yw € G.adj(v) do
if (markedjw] == false) then
edgeTolw] = v
marked[v] = true
q.enqueue(w)
end

end

end

Analog zur Tiefensuche ist im folgenden auch die Breitensuche grafisch dargestellt. Auch hier kann

das Prinzip einfach auf einen Graphen iibertragen werden.

7’5 /’\ 7’5
/\ /\ /\ /\ /\ /\
“/\ \ 17\ \ W\ \

Original Schritt 1 Schritt 2

12
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4.2.5 Prim

Der Prim Algorithmus dient der Erstellung eines Minimalen Spannbaumes (Minimal-Spanning-Tree
MST). Ein MST ist ein Baum, der alle Knoten in einem zusammenhéngenden Graphen mit minimalen
Kosten verbindet. Algorithmus [3| beschreibt ihn als Pseudocode.

Algorithm 3: Prim Algorithmus - Lazy-Version (s. Sedgewick S.662)
input : Graph G, Startknoten s
output : MST zu Graph G

parameter: marked[0..|V| — 1] = false : markiert Vu € G ob u bereits traversiert/besucht wurde

Adj[u]: Liste adjazenter Kanten zu u inkl. ihrer Kosten

PQ + Priorititswarteschlange mit Kanten

Markiere den Startknoten s als besucht

marked[s] = true

Pushe alle adjazenten Kanten e zum Startknoten s in die PQ
for e € Adj[s] do

L PQ.push(e)

while P(Q nicht leer do

Hole Kante e mit minimalen Kosten aus PQ

M ST .enqueue(e) fuge Kante e zum MST hinzu, wenn v und v noch nicht besucht wurden
bzw. wenn kein Zykel mit der Kante e erzeugt wird.

Sei v der nicht besuchte Knoten von der Kante e

marked[v] = true markiere Knoten v als besucht

Lege alle Kanten e von v, die zu unmarkierten Knoten fithren in die PQ
for e € Adj[v] do
u sei der nicht besuchte Knoten der Kante e = (u,v)
if (!marked[u]) then
L PQ.push(e)

Ein Beispiel mit dem folgenden Graph beschreibt den Algorithmus wobei als Startknoten der Knoten
d verwendet wurde. Die grau eingefirbten Kanten sind die zur Auswahl stehenden adjazenten Kanten,
die den aktuellen MST um eine Kante zu noch nicht besuchten Knoten erweitert. Die mint-gefarbten

Kanten sind die dem MST hinzugefiigten Kanten.

14



FH Aachen

Fachbereich ADS Praktikum

Elektrotechnik und . ) SS 2024 ¢

Informationstechnik Prof. Dipl.-Inf. Ingrid Scholl g%l
a a

S|

5&()#0
8 d/w \76/5
RZ

ot

N

S
o

[
S
()

Q)

S

Q)

AN
AN

—
—

N

f 11 p ! g
Startknoten d, erste a hinzugefiigt, neue
Originalgraph Kantenauswahl Kantenauswahl

S|

a

™~

5

ot

\/

©

S
o

1

ot

\
d/\/ /
\/\ \

7 7z

d e

6 9
I AN /% \
f g g
f hinzugefiigt, neue b hinzugefiigt, neue e hinzugefiigt, neue
Kantenauswahl Kantenauswahl Kantenauswahl
a a

o
=
(@)

A/

NV
/N

=
o
ot

—
Tt
SH

FIN/

/

811
11
f g f
¢ hinzugefiigt, neue ¢ hinzugefiigt, MST
Kantenauswahl vollstdndig

Der vollsténdige MST ist derjenige Baum, der alle Knoten kostenminimal von Knoten d ausgehend

verbindet. Die Gesamtkosten aller Kanten des MST betragen hier 39.

4.2.6 Kruskal

Dieser Algorithmus ist ebenfalls zum Finden eines MST, arbeitet aber etwas anders als Prim. In
diesem Fall wird kein Startknoten gew#hlt, sondern alle Knoten starten ihren eigenen MST mit eigener
treeID. Alle Kanten werden zu Beginn der Grofle nach sortiert und immer die (dem Kantengewicht
nach) kleinste Kante als néchste gewéhlt. Sofern die Knoten der Kante noch nicht die gleiche treeID
haben, werden beide MSTs mit der gewahlten Kante verbunden und die treelDs vereint. Auch hierzu
sehen Sie in Algorithmus (4] den Pseudocode, den Sie zur Implementierung verwenden kénnen. Als

alternative Ressource wird auf die Vorlesungsunterlagen Kapitel 7 Teil 2, Folie 21 bis 28 verwiesen.
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Algorithm 4: Kruskal Algorithmus (s. Sedgewick S.670)
input : Graph G
output : MST zu Graph G

parameter: treel D[0..|V| — 1] BaumID zu einem Knoten

PQ < Prioritdtswarteschlange mit Kanten aufsteigend sortiert nach ihren Gewichten
E < alle Kanten des Graphen G
|V| <= Anzahl der Knoten des Graphen G

Fiige alle Kanten e € F aufsteigend sortiert in die PQ ein:
for e € F do

t PQ.enqueue(e)

Markiere zu Beginn jeden Knoten als einzelnen Baum:
forie0,1,...,]V]—1] do
L treel D[i| =

while PQ nicht leer und MST.size() < |[V|—1 do

e = PQ.dequeue() hole kiirzeste Kante e=(u,v) aus PQ

if (treelD[u] # treeID[v]) then
Fiige Kante e = (u,v) zum MST hinzu, die 2 verschiedene Biume verbindet:
M ST .enqueue(e)
Vereinige die BaumlID fiir beide Baume:

treel D.union(u,v)

Die folgenden Abbildungen zeigen am gleichen Beispiel wie bei Prim den Ablauf des Algorithmus. Die

Kanten wurden initial wie folgt sortiert:
(a,d,b) (¢,e,5) (d, f,6) (a,b,7) (b,e,7) (b,c,8) (e, f,8) (b,d,9) (e, 9,9) (f,g,11) (d,e, 15)

a,5xb,1 a’x 7&
/ / \ / / \ /
/gn\ \ /SH\ \ /811\

Originalgraph, 7 Kante (a,d,5) hinzugefiigt, 6 Kante (c, e,5)
Baume Biume hinzugefiigt, 5 Baume

A

ot

©

d,3/
\
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a,0

L,

5

5\6,0;0, \
| ZA N
I AN \ /811\

Kante (d, f,6) hinzugefiigt, 4 Kante (a,b,7) Kante (b, e, 7) hinzugefiigt, 2
Biume hinzugefiigt, 3 Bdume Biume

do/\/
’\/\

\
/\/
\/\

a, 0\ \
5%151),0\7—/:,0 /
d, o\ e, 0 \

yWU—9;
Kante (b, c, 8) Kante (b,d,9)

verwerfen Kante (e, f,8) verwerfen verwerfen

\
5 b,0 2
7
~. \
d, 0
X

Kante (e, g,9) hinzufiigen, 1

Baum

Nachdem Knoten g hinzugefiigt wurde ist der MST vollsténdig und es miissen keine weiteren Kanten
mehr betrachtet werden. Die Gesamtkosten berechnen sich durch die Summe aller verwendeten Kante.
In diesem Fall wurden exakt die gleichen Kanten wie beim Prim Algorithmus verwendet und somit
betriagt die Summe des MST auch hier 39.

Die grau gefiarbten Kanten werden nicht zum MST hinzugefiigt, da durch diese Kanten ein Zykel

entstehen wiirde. Nur die mint-farbenen Kanten bilden zusammen den MST.
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Kante |a|b|c|d|e|f |g| #Biume

0111234 |5]6]|7

(adb) [0]1[2]0[4]5|6]6

(ces) |01 [2]0[2][56]5

(df6) (01 [2]0[2]0]|6]4

(ab7) |0]0[2]0[2]06]3

(be7) |OJO]0[0[0[0][6]2

(be8) |[0]0[0[0[0[0]6] Zykel

(ef8) |0[0]0|0|0|0]|6]| Zykel

(b,d,9) |O|0O|[0[0|0]|0]6]| Zykel

(,29) |O|10|[O0O[O0]O]O|O]|1

Tabelle 1: Tabelle TreelD

4.2.7 Dijkstra

Der Dijkstra-Algorithmus liefert zu einem Startknoten ausgehend die kiirzesten Wege zu jedem Knoten
in einem zusammenhéngenden Digraph. Ein Digraph ist ein gerichteter und gewichteter Graph. Der
in der Vorlesung vorgestellte Algorithmus basiert auf der Version von Sedgewick, Algorithmus 4.9,
S. 697. In jedem Durchlauf wird diejenige Kante hinzugefiigt, die von einem Baumknoten zu einem

Nicht-Baumknoten verlduft und deren Ziel w dem Startknoten s am néichsten ist.

Folgende Datenstrukturen werden fiir die Implementierung benétigt:

e In einem Array edgeTo seien alle Kanten des Graphen gespeichert.

e in einem Array distTo werden die Gesamtkosten der Wege vom Startknoten bis zu einem anderen

Knoten des Graphen gespeichert.

e PQ sei eine Prioritdtswarteschlage, die zum bestehenden Kiirzeste-Pfade-Baum die Wegekosten

zu adjazenten noch nicht besuchten Knoten speichert

Weitere Informationen zum Dijkstra-Algorithmus entnehmen Sie bitte aus den Vorlesungsunterlagen
Kapitel 7 Teil 2, Folien 45-57.
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Algorithm 5: Djikstra Algorithmus Pseudo-Code (s. abgewandelt in Sedgewick S. 697)
input : Graph G, Startknoten s

output : Kiirzeste-Pfade-Baum G’s zu Graph G und Startknoten s in Form edgeTo und
distTo

parameter: edgeTo[0..|V| — 1] markiert zu einem Knoten s den Vorgéinger Knoten s’

distTo[0..|V] — 1] markiert die Weg-Kosten bis zum Startknoten fiir jeden Knoten

PQ + Priorititswarteschlange mit Knoten aufsteigend nach Kosten sortiert

E < alle Kanten des Graphen G

|V| <= Anzahl der Knoten des Graphen G

Initialisiere edgeTo-Array und distTo-Array, zundchst ist noch kein kiirzester-Pfad bekannt, also
ist die Entfernung unendlich groff und kein Knoten hat einen Vorgéngerknoten:
for ve V do
edgeTolv] = —1
L distTo[v] = o0

Distanz fiir den Startknoten gleich 0 setzen und zur P hinzufiigen:
distTo[s] = 0.0
PQ.enqueue(s,0.0);

while P(Q nicht leer do
v = PQ.dequeue() hole den néchsten unbesuchten Knoten mit minimalen Kosten aus PQ
for Ve = (v, w) mit v = Startknoten und w = Zielknoten do
if distTolw] > distTo[v] + e.weight() then
distTo[w] = distTo[v] + e.weight()
edgeTo[w] = v
if PQ.contains(w) then
L PQ.update(w, distTo[w])

else
| PQ.enqueue(w, distTo[w])

Die update(Knoten, distTo)-Funktion aktualisiert einen Knoten, wenn dieser giinstiger mit einer Kan-

te(v,w) erreicht wird.
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