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Dieses Praktikum beschäftigt sich mit den Inhalten aus der Vorlesung ADS K7 Graphenalgorithmen.

4 Praktikum: Graphen

Literaturhinweise: Folien/Videos zu Kapitel 7 / Buch: Algorithmen und Datenstrukturen

Robert Sedgewick

In dieser Aufgabe ist erneut Ihre Kompetenz als Systemarchitekt bei
”
Data Fuse“ gefragt. Die verschie-

denen Standorte sollen mit neuen Routern verbunden werden und Sie sollen testen, ob die geplanten

Router und deren Verbindungen ausreichen, um alle Standorte zu verbinden. Um dies zu lösen, nutzen

Sie Algorithmen der Graphentheorie.

In Abbildung 1 sehen Sie ein Beispiel, wie so ein Graph aufgebaut sein könnte, die Knoten stellen die

Router an den Standorten dar, die Kanten die Verbindungen mit einem Gewicht als fiktive Entfernung.

Hier lässt sich schnell erkennen, dass alle Standorte verbunden sind, mit der minimalen Entfernung

wird es hier auf den ersten Blick schon schwieriger.
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Abbildung 1: Beispiel Standorte der Router mit Verbindungen

4.1 Aufgabenstellung

1. Implementieren Sie ein Programm, dass zur Verarbeitung von vorgegebenen Graphen verwen-

det werden soll. Legen Sie dazu eine Graphen- und Knotenklasse nach den unten aufgeführten

Vorgaben (Klassen: Edge, EdgeWeightedGraph, PrimMST, KruskalMST, DirectedEdge,

EdgeWeightedDigraph und DijkstraSP) an. Folgende Funktionalität müssen Sie hier selber

implementieren:

� Ausgabe des Graphen

� Rekursive Tiefensuche

� Iterative Breitensuche
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� Prim (Minimaler Spannbaum)

� Kruskal (Minimaler Spannbaum)

� Kürzeste Wege nach Dijkstra

Es dürfen weitere Attribute und Methoden hinzugefügt werden und auch Übergabeparameter

verändert werden. Begründen Sie diese Änderungen bei der Abgabe.

2. Implementieren Sie wie schon in den letzten Aufgaben ein Menü zur Auswahl für den Benutzer

wie folgt:

1 Praktikum 5: Graphenalgorithem:

2 1) Graph einlesen

3 2) Tiefensuche

4 3) Breitensuche

5 4) MST nach Prim (Eingabe: Startknoten)

6 5) MST nach Kruskal

7 6) Kürzeste Wege nach Dijkstra (Eingabe: Startknoten)

8 7) Ausgabe der Adjazenzliste

9 8) Kante löschen

10 9) Kante hinzufügen

11 10)Programm beenden

12 Weiter mit beliebiger Eingabe ...

13 ?>

Bei dem Einlesen des Graphs muss es möglich sein zwischen allen drei Beispielgraphen zu wählen.

3. Für die Berechnung der Minimalen Spannbäume werden gewichtete Graphen benötigt. Verwen-

den Sie dazu die folgenden Klassen:

� API für eine gewichtete und ungerichtete Kante:

1 class Edge {

2 private:

3 int _either; // ein Knoten der Kante

4 int _other; // der andere Knoten der Kante

5 double _weight; // Kantengewicht

6 ...

7 public:

8 Edge(int v, int w, double weight);

9 int either(); // einer der beiden Knoten

10 int other(int v); // der andere Knoten

11 double weight(); // Gewicht dieser Kante

12 ...

13 };

� API für ungerichteten kantengewichteten Graphen

2



FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

1 class EdgeWeightedGraph {

2 private:

3 int V; // Anzahl Knoten von G

4 int E; // Anzahl Kanten von G

5 ...

6 public:

7 EdgeWeightedGraph(int V); // Leerern Graphen mit V Knoten erstellen

8 EdgeWeightedGraph(std::string fn); // Graph einlesen aus Textdatei

9 int getV(); // liefert Anzahl Knoten

10 int getE(); // liefert Anzahl der Kanten

11 void add(Edge e); // fügt Kante e dem Graphen hinzu

12 std::vector<Edge> getAdj(int v); // liefert Array der adjazenten Kanten zu v

13 std::vector<Edge> edges(); // alle Kanten dieses Graphen

14 bool delEdge(Edge e); // Löscht eine Kante, wenn sie enthalten ist

15 ...

16 };

� API für den Minimalen Spannbaum nach Prim:

1 #include <queue>

2 class PrimMST {

3 private:

4 std::vector<bool> marked; // MST-Knoten

5 std::vector<Edge> mst; // MST-Kanten

6 std::priority_queue<Edge, std::vector<Edge>, std::greater<Edge>> pq;;

7 // Menge der Randkanten in PQ, pq.top() liefert kleinste Gewicht

8 ...

9 public:

10 PrimMST(EdgeWeightedGraph G, int s);

11 void visit(EdgeWeightedGraph G, int v);

12 std::vector<Edge> edges(); // liefert Kanten des MST

13 double weight(); // berechnet die Gesamtkosten des MST

14 ...

15 };

� API für den Minimalen Spannbaum nach Kruskal:

1 class KruskalMST {

2 private:

3 std::vector<Edge> mst; // MST-Kanten

4 std::vector<int> treeID; // BaumId zu jedem Knoten

5 ...

6 public:

7 KruskalMST(EdgeWeightedGraph G); // Konstruktor

8 std::vector<Edge> edges(); // liefert Kanten des MST

9 double weight(); // berechnet Gesamtkosten des MST

10 ...

11 }

Ihnen stehen die Grundgerüste dieser Klassen auf ILIAS zur Verfügung.

4. Implementieren Sie eine Methode zur Ausgabe des Graphen auf der Konsole als Adja-

zenzliste, wie im Beispiel unten gezeigt.
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1 A -> B [7] -> D [5]

2 B -> A [7] -> C [8] -> D [9] -> E [7]

3 C -> B [8] -> E [5]

4 D -> A [5] -> B [9] -> E [15] -> F [6]

5 E -> B [7] -> C [5] -> D [15] -> F [8] -> G [9]

6 F -> D [6] -> E [8] -> G [11]

7 G -> E [9] -> F [11]

Hinweis: Beispiel erste Zeile: Knoten A hat eine Kante zu Knoten B mit Kosten 7 und zu Knoten

D mit Kosten 5, Für die anderen Zeilen gilt entsprechendes. Die Gewichte stehen in den eckigen

Klammern.

5. Überprüfen Sie mittels Tiefen- oder Breitensuche, ob alle Knoten verbunden sind, also alle

Standorte miteinander kommunizieren könnten.

Implementieren Sie dazu die modifizierte rekursive Tiefensuche nach Folie 54 der Vorlesung

Kapitel 7 Graphenalgorithmen Teil 1 und die iterative Breitensuche nach Folie 66. Verwenden

Sie das marked und edgeTo-Array, um festzustellen ob der Graph zusammenhängend ist und in

welcher Reihenfolge die Knoten besucht wurden. Geben Sie das Resultat auf der Konsole wie im

folgenden Beispiel aus:

1 Tiefensuche (Depth-First-Search (DFS)) - Startknoten: 0

2 Besuchsreihenfolge:

3 A -> B -> C -> E -> D -> F -> G

4

5 EdgeTo_Array:

6 A -> -1 (Startknoten)

7 B -> 0

8 C -> 1

9 ....

10

11 Marked_Array:

12 A -> true (Startknoten)

13 B -> true

14 ....

15

16 Graph ist zusammenhängend

17

18 Breitensuche (Breadth-First-Search (BFS)) - Startknoten: 0

19 Besuchsreihenfolge:

20 A -> B -> D -> C -> E -> F -> G

21

22 EdgeTo_Array:
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23 A -> -1 (Startknoten)

24 B -> 0

25 C -> 1

26 ....

27

28 Marked_Array:

29 A -> true (Startknoten)

30 B -> true

31 ....

32

33 Graph ist zusammenhängend

6. Berechnen Sie mittels Prim und Kruskal den minimalen Spannbaum. Geben Sie alle Kan-

ten des Minimalen Spannbaums und die Gesamtkosten für beide Algorithmen aus und vergleichen

Sie diese. Prüfen Sie durch Zeichnen der Bäume, ob ihr Ergebnis stimmt Bei der Berechnung mit

Kruskal soll für jede hinzugefügte Kante die treeID der Knoten ausgegeben werden, ähnlich der

Tabelle ??. Die Ausgabe des MST für Prim sollte in Anlehnung an das untenstehende Beispiel

erfolgen:

1 Minimaler Spannbaum (MST) nach Prim:

2 Gewicht: 39

3 Adjazenzliste:

4 A -> D [ 5] -> B [ 7]

5 B -> E [ 7]

6 C -> E [ 5]

7 D -> F [ 6]

8 E -> G [ 9]

7. Berechnen Sie mittels Dijkstra die kürzesten Wege zu einem von Ihnen definierten Start-

knoten. Berechnen Sie den kürzesten Weg und geben Sie den Pfad beginnend vom Startknoten

auf der Konsole aus - dabei müssen auch die Pfadkosten für jeden Knoten ausgegeben werden.

Verwenden Sie die unten vorgegebenen Klassen als Basis.

� API für eine gerichtete Kante

1 class DirectedEdge {

2 private:

3 double _weight; // Gewicht der Kante

4 int _from; // Index des Startknoten

5 int _to; // Index des Endknoten

6 ...

7 public:

8 DirectedEdge(double weight, int from, int to);

9 int from(); // liefert den Startknoten

10 int to(); // liefert den Endknoten
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11 double weight(); // Gewicht der Kante

12 ...

13 };

� API für einen gerichteten Digraphen

1 class EdgeWeightedDigraph {

2 private:

3 int V; // Anzahl Knoten von G

4 int E; // Anzahl Kanten von G

5 ...

6 public:

7 EdgeWeightedDigraph(int V); // Leeren Digraphen mit V Knoten erstellen

8 EdgeWeightedDigraph(std::string fn); // Graph einlesen aus Textdatei

9 void add(DirectedEdge e); // gerichtete Kante hinzufügen

10 int getV(); // liefert Anzahl Knoten

11 int getE(); // liefert Anzahl der Kanten

12 std::vector<DirectedEdge> getAdj(int v);// liefert Array der adjazenten Kanten zu v

13 std::vector<DirectedEdge> edges(); // alle Kanten dieses Graphen

14 bool delEdge8DirectedEdge e); // löscht eine Kante, wenn sie enthalten ist

15 ...

16 };

� API für die Kürzesten Wege nach Dijkstra:

1 class DijkstraSP {

2 private:

3 std::map<int, DirectedEdge> edgeTo; // Map mit Kanten für kürzeste Wege

4 std::vector<double> distToVect; // Distanzvektor

5 Utils::PriorityQueue<int> pq; // Prioritätswarteschlange (gegeben)

6 void relax(EdgeWeightedDigraph G, int v); // Relaxation

7 ...

8 public:

9 DijkstraSP(EdgeWeightedDigraph G, int s);

10 double distTo(int v); // Abstände vom Startvertex zu v

11 bool hasPathTo(int v); // Überprüft die existens eines Pfades

12 std::vector<DirectedEdge> pathTo(int v); // Kanten des kürzsesten Weges

13 ...

14 };

� Beispielausgabe für Dijkstra

1 Knoten i | A B C D E F G

2 -------------------------------

3 edgeTo[i]| - 0 1 0 1 3 5

4 -------------------------------

5 distTo[i]| 0 7 15 5 14 11 22

6

7 Kürzester Weg (Dijkstra):

8 Start: A

9 Ziel: G

10 Pfad: A [5] -> D [6] -> F [11] -> G

11 Kosten: 22
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4.2 Lösungshinweise

In den nächsten Abschnitten folgen allgemeine Hinweise zu den Algorithmen, die Ihnen die Program-

mierung erleichtern sollen. Beachten Sie, dass hier nur Hinweise gegeben werden. Gegebene Beispiele

müssen erweitert oder überarbeitet und können nicht so übernommen werden.

4.2.1 Beispielgraphen

Es stehen Ihnen drei Graphen als Beispiel zur Verfügung. Alle Graphen stehen als einfache Textdatei

(graph*.txt) zur Verfügung. Sie finden den Graph dort als Kantenliste aufgebaut. Die erste Zeile gibt

die Knotenzahl V und die zweite Zeile die Anzahl der Kanten E an. In allen folgenden Zeilen sind

die Kanten als Tripel in folgender Form aufgeführt: Startknoten v → Endknoten w→ Gewicht, wobei

die Knoten mit 0 . . . (V − 1) nummeriert sind. Die Graphen sind ungerichtet und gewichtet. Aufgabe

zum Praktikum: Zeichnen Sie die Graphen, die als Adjazenzliste auf ILIAS vorgegeben werden auf,

damit die Algorithmen im Praktikums-Termin so überprüft werden können.

4.2.2 Hinweise Unittests

In dieser Aufgabe helfen Ihnen die Unittests wieder bei der Lösung. Für Tiefen- und Breitensuche

wird erwartet, dass Ihr Programm false zurückliefert, wenn von dem Startknoten nicht alle Knoten

erreicht werden konnten. Es soll hingegen true liefern wenn alle Knoten besucht wurden.

Bei Prim und Kruskal werden die Kosten und Kanten des minimalen Spannbaumes geprüft. Für Prim

sind diese bei den ersten beiden Graphen mit beliebigen Startknoten immer gleich. Graph 3 ist nicht

zusammenhängend und daher sollte ihr Algorithmus abhängig vom Startknoten verschiedene Ergeb-

nisse liefern. Sorgen Sie dafür, dass ihr Programm trotzdem zum Ende kommt und die unvollständige

Anzahl an Kanten im MST akzeptiert.

Für Kruskal gilt im Prinzip genau das gleiche, nur dass es hier keinen Startknoten gibt. Kruskal liefert

bei den ersten beiden Graphen ein eindeutiges Ergebnis. Bei Graph 3, soll er ebenfalls zum Ende

kommen und für jeden zusammenhängenden Teilgraphen den MST mit seinen Kosten ausgeben.

4.2.3 Tiefensuche

Die Tiefensuche wurde ihnen in der Vorlesung vorgestellt. Sie sucht zunächst solange in die Tiefe, bis

kein weiterer Knoten als Kind mehr folgt und geht dann wieder eine Ebene höher. Verwenden Sie

den modifizierten Algorithmus 1 mit integrierter Pfadsuche für die rekursive Tiefensuche (s. Folie 56).

Bei einer Tiefensuche werden alle erreichten Knoten als besucht markiert in dem marked-Array und

im edgeTo-Array werden alle Kanten eingetragen, die zur Traversierung beigetragen haben. Gibt es

Knoten, die nicht durch eine einmalige Tiefensuche erreicht werden können, ist der Graph nicht zusam-

menhängend. Dies kann im marked-Array erkannt werden, falls Knoten nach einmaliger Tiefensuche

noch nicht besucht wurden.
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Algorithm 1: Modifizierte Rekursive Tiefensuche

marked[0..|V − 1|] = false

/* edgeTo speichert letzten Knoten auf Pfad zu

diesem Knoten */

edgeTo[0..|V − 1|] = −1
s = v0 und edgeTo[s] = 0 /* s ist Startknoten */

DFS(G,s) /* Starten der Pfadsuche */

Function DFS(G, v)

marked[v] = true

for ∀w ∈ G.adj(v) do

if marked(w) == false then

edgeTo[w] = v

DFS(G,w)

end

end

Die folgenden Grafiken zeigen die Tiefensuche exemplarisch an einem Baum, für einen Graphen funk-

tioniert diese auf die gleiche Weise. Es muss nur berücksichtigt werden, ob ein Knoten bereits besucht

wurde.
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Endergebnis

An dem Beispiel wird nun zusätzlich gezeigt, wie sich der Zustand des EdgeTo-Arrays und des Marked-

Arrays in jedem Schritt verändert. Das Marked-Array speichert, ob ein Knoten bereits besucht wurde.

Die blaue Markierung gibt an, wann der jeweilige Knoten in welchem Schritt besucht wurde.
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Abbildung 2: Zustand des Marked-Array nach jeder Iteration

rot = noch nicht besuchter Knoten

blau = neu besuchter Knoten

grün = besuchter Knoten aus vorherigen Schritten

Zusätzlich wird nun ähnlich wie beim Marked-Array, das EdgeTo-Array angegeben. Das EdgeTo-

Array gibt an, über welchen Knoten man zu einem anderen traversieren kann. Dazu wird zunächst

eine Abbildung von den Knoten in die natürlichen Zahlen definiert.

Abbildung 3: Abbildung Namen ⇔ Zahlen

Nun wird über den Algorithmus bestimmt, über welchen Knoten man zu einem anderen kommt. Da

der Knoten a(0) der Startknoten ist, bleibt dieser auf dem Weg -1, s. Abb. 4.

Zum Schluss muss die Abbildung wieder rückgängig gemacht werden, s. Abb. 5.
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Abbildung 4: Zustand des EdgeTo-Array nach jeder Iteration

Abbildung 5: Zustand des EdgeTo-Array nach der rekursiven Tiefensuche

4.2.4 Breitensuche

Im Gegensatz zur Tiefensuche wird hier zunächst in der Breite gesucht. Das bedeutet zu einem Knoten

werden zunächst alle Kinder untersucht, bevor man die Kindes-Kinder betrachtet.

Auch hier können Sie sich wieder am Pseudocode aus der Vorlesung in Algorithmus 2 orientieren, s.

Folie 66.

11



FH Aachen

Fachbereich
Elektrotechnik und
Informationstechnik

ADS Praktikum

Prof. Dipl.-Inf. Ingrid Scholl
SS 2024

Algorithm 2: Iterative Breitensuche

marked[0..|V − 1|] = false

edgeTo[0..|V − 1|] = −1
s = v0

Function BFS it(G, s)

queue q

marked[s] = true

q.enqueue(s)

while (!q.isEmpty()) do

v = q.dequeue()

if (marked[v]) then
continue

marked[v] = true

for ∀w ∈ G.adj(v) do

if (marked[w] == false) then

edgeTo[w] = v

marked[v] = true

q.enqueue(w)

end

end

end

Analog zur Tiefensuche ist im folgenden auch die Breitensuche grafisch dargestellt. Auch hier kann

das Prinzip einfach auf einen Graphen übertragen werden.
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4.2.5 Prim

Der Prim Algorithmus dient der Erstellung eines Minimalen Spannbaumes (Minimal-Spanning-Tree

MST). Ein MST ist ein Baum, der alle Knoten in einem zusammenhängenden Graphen mit minimalen

Kosten verbindet. Algorithmus 3 beschreibt ihn als Pseudocode.

Algorithm 3: Prim Algorithmus - Lazy-Version (s. Sedgewick S.662)

input : Graph G, Startknoten s

output : MST zu Graph G

parameter: marked[0..|V | − 1] = false : markiert ∀u ∈ G ob u bereits traversiert/besucht wurde

Adj[u]: Liste adjazenter Kanten zu u inkl. ihrer Kosten

PQ← Prioritätswarteschlange mit Kanten

Markiere den Startknoten s als besucht

marked[s] = true

Pushe alle adjazenten Kanten e zum Startknoten s in die PQ

for e ∈ Adj[s] do

PQ.push(e)

while PQ nicht leer do

Hole Kante e mit minimalen Kosten aus PQ

MST.enqueue(e) füge Kante e zum MST hinzu, wenn u und v noch nicht besucht wurden

bzw. wenn kein Zykel mit der Kante e erzeugt wird.

Sei v der nicht besuchte Knoten von der Kante e

marked[v] = true markiere Knoten v als besucht

Lege alle Kanten e von v, die zu unmarkierten Knoten führen in die PQ

for e ∈ Adj[v] do

u sei der nicht besuchte Knoten der Kante e = (u, v)

if (!marked[u]) then

PQ.push(e)

Ein Beispiel mit dem folgenden Graph beschreibt den Algorithmus wobei als Startknoten der Knoten

d verwendet wurde. Die grau eingefärbten Kanten sind die zur Auswahl stehenden adjazenten Kanten,

die den aktuellen MST um eine Kante zu noch nicht besuchten Knoten erweitert. Die mint-gefärbten

Kanten sind die dem MST hinzugefügten Kanten.
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Kantenauswahl

c

e

g

a

b

f

d

7

8
5

9

7

515

6

8

9

11

b hinzugefügt, neue
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g hinzugefügt, MST

vollständig

Der vollständige MST ist derjenige Baum, der alle Knoten kostenminimal von Knoten d ausgehend

verbindet. Die Gesamtkosten aller Kanten des MST betragen hier 39.

4.2.6 Kruskal

Dieser Algorithmus ist ebenfalls zum Finden eines MST, arbeitet aber etwas anders als Prim. In

diesem Fall wird kein Startknoten gewählt, sondern alle Knoten starten ihren eigenen MST mit eigener

treeID. Alle Kanten werden zu Beginn der Größe nach sortiert und immer die (dem Kantengewicht

nach) kleinste Kante als nächste gewählt. Sofern die Knoten der Kante noch nicht die gleiche treeID

haben, werden beide MSTs mit der gewählten Kante verbunden und die treeIDs vereint. Auch hierzu

sehen Sie in Algorithmus 4 den Pseudocode, den Sie zur Implementierung verwenden können. Als

alternative Ressource wird auf die Vorlesungsunterlagen Kapitel 7 Teil 2, Folie 21 bis 28 verwiesen.
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Algorithm 4: Kruskal Algorithmus (s. Sedgewick S.670)

input : Graph G

output : MST zu Graph G

parameter: treeID[0..|V | − 1] BaumID zu einem Knoten

PQ← Prioritätswarteschlange mit Kanten aufsteigend sortiert nach ihren Gewichten

E ← alle Kanten des Graphen G

|V | ← Anzahl der Knoten des Graphen G

Füge alle Kanten e ∈ E aufsteigend sortiert in die PQ ein:

for e ∈ E do

PQ.enqueue(e)

Markiere zu Beginn jeden Knoten als einzelnen Baum:

for i ∈ [0, 1, . . . , |V | − 1] do

treeID[i] = i

while PQ nicht leer und MST.size() < |V | − 1 do

e = PQ.dequeue() hole kürzeste Kante e=(u,v) aus PQ

if (treeID[u] ̸= treeID[v]) then

Füge Kante e = (u, v) zum MST hinzu, die 2 verschiedene Bäume verbindet:

MST.enqueue(e)

Vereinige die BaumID für beide Bäume:

treeID.union(u, v)

Die folgenden Abbildungen zeigen am gleichen Beispiel wie bei Prim den Ablauf des Algorithmus. Die

Kanten wurden initial wie folgt sortiert:

(a, d, 5) (c, e, 5) (d, f, 6) (a, b, 7) (b, e, 7) (b, c, 8) (e, f, 8) (b, d, 9) (e, g, 9) (f, g, 11) (d, e, 15)
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Originalgraph, 7
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Kante (a, d, 5) hinzugefügt, 6

Bäume
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8
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Kante (c, e, 5)

hinzugefügt, 5 Bäume
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Kante (e, g, 9) hinzufügen, 1

Baum

Nachdem Knoten g hinzugefügt wurde ist der MST vollständig und es müssen keine weiteren Kanten

mehr betrachtet werden. Die Gesamtkosten berechnen sich durch die Summe aller verwendeten Kante.

In diesem Fall wurden exakt die gleichen Kanten wie beim Prim Algorithmus verwendet und somit

beträgt die Summe des MST auch hier 39.

Die grau gefärbten Kanten werden nicht zum MST hinzugefügt, da durch diese Kanten ein Zykel

entstehen würde. Nur die mint-farbenen Kanten bilden zusammen den MST.
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Kante a b c d e f g #Bäume

0 1 2 3 4 5 6 7

(a,d,5) 0 1 2 0 4 5 6 6

(c,e,5) 0 1 2 0 2 5 6 5

(d,f,6) 0 1 2 0 2 0 6 4

(a,b,7) 0 0 2 0 2 0 6 3

(b,e,7) 0 0 0 0 0 0 6 2

(b,c,8) 0 0 0 0 0 0 6 Zykel

(e,f,8) 0 0 0 0 0 0 6 Zykel

(b,d,9) 0 0 0 0 0 0 6 Zykel

(e,g,9) 0 0 0 0 0 0 0 1

Tabelle 1: Tabelle TreeID

4.2.7 Dijkstra

Der Dijkstra-Algorithmus liefert zu einem Startknoten ausgehend die kürzesten Wege zu jedem Knoten

in einem zusammenhängenden Digraph. Ein Digraph ist ein gerichteter und gewichteter Graph. Der

in der Vorlesung vorgestellte Algorithmus basiert auf der Version von Sedgewick, Algorithmus 4.9,

S. 697. In jedem Durchlauf wird diejenige Kante hinzugefügt, die von einem Baumknoten zu einem

Nicht-Baumknoten verläuft und deren Ziel w dem Startknoten s am nächsten ist.

Folgende Datenstrukturen werden für die Implementierung benötigt:

� In einem Array edgeTo seien alle Kanten des Graphen gespeichert.

� in einem Array distTo werden die Gesamtkosten der Wege vom Startknoten bis zu einem anderen

Knoten des Graphen gespeichert.

� PQ sei eine Prioritätswarteschlage, die zum bestehenden Kürzeste-Pfade-Baum die Wegekosten

zu adjazenten noch nicht besuchten Knoten speichert

Weitere Informationen zum Dijkstra-Algorithmus entnehmen Sie bitte aus den Vorlesungsunterlagen

Kapitel 7 Teil 2, Folien 45-57.
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Algorithm 5: Djikstra Algorithmus Pseudo-Code (s. abgewandelt in Sedgewick S. 697)

input : Graph G, Startknoten s

output : Kürzeste-Pfade-Baum G′s zu Graph G und Startknoten s in Form edgeTo und

distTo

parameter: edgeTo[0..|V | − 1] markiert zu einem Knoten s den Vorgänger Knoten s′

distTo[0..|V | − 1] markiert die Weg-Kosten bis zum Startknoten für jeden Knoten

PQ← Prioritätswarteschlange mit Knoten aufsteigend nach Kosten sortiert

E ← alle Kanten des Graphen G

|V | ← Anzahl der Knoten des Graphen G

Initialisiere edgeTo-Array und distTo-Array, zunächst ist noch kein kürzester-Pfad bekannt, also

ist die Entfernung unendlich groß und kein Knoten hat einen Vorgängerknoten:

for v ∈ V do

edgeTo[v] = −1
distTo[v] =∞

Distanz für den Startknoten gleich 0 setzen und zur PQ hinzufügen:

distTo[s] = 0.0

PQ.enqueue(s, 0.0);

while PQ nicht leer do

v = PQ.dequeue() hole den nächsten unbesuchten Knoten mit minimalen Kosten aus PQ

for ∀e = (v, w) mit v = Startknoten und w = Zielknoten do

if distTo[w] > distTo[v] + e.weight() then

distTo[w] = distTo[v] + e.weight()

edgeTo[w] = v

if PQ.contains(w) then

PQ.update(w, distTo[w])

else
PQ.enqueue(w, distTo[w])

Die update(Knoten, distTo)-Funktion aktualisiert einen Knoten, wenn dieser günstiger mit einer Kan-

te(v,w) erreicht wird.
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