This commit is contained in:
2025-06-09 03:01:45 +02:00
parent 88921eb8a2
commit ca8e8e9621

View File

@@ -1,5 +1,5 @@
import random
import matplotlib.pyplot as plt
import numpy as np
# Linear Feedback Shift Register
@@ -53,14 +53,23 @@ def CRC_Parity(s, g):
def channel_bsc(p, n):
f = ""
errors = ""
for i in range(n):
p_i = random.random()
# p_i <= p ? F += "1" : F += "0"
f += "1" if p_i <= p else "0"
errors += "1" if np.random.random() < p else "0"
return f
return errors
def send_channel(p, codeword, error_pattern):
received = ""
for j in range(len(codeword)):
bit1 = int(codeword[j])
bit2 = int(error_pattern[j])
received += str(bit1 ^ bit2)
return received
def p_k_Fehler(p):
@@ -93,22 +102,133 @@ def p_k_Fehler(p):
plt.show()
def optimal_blocksize(p, word, poly):
crc_bits = len(poly) - 1
n = len(word)
best_datasize = float('inf')
best_blocksize = 0
for i in range(10):
block_size_i = 2 ** i
if block_size_i < n:
blocks = n / block_size_i
codeword_size = block_size_i + crc_bits
p_succesful = (1 - p) ** codeword_size
block_avrg_reps = 1 / p_succesful
block_avrg_datasize = codeword_size * block_avrg_reps
total_avrg_datasize = block_avrg_datasize * blocks
if total_avrg_datasize < best_datasize:
best_datasize = total_avrg_datasize
best_blocksize = block_size_i
return best_blocksize
def generate_random_binary(n):
bin_string = ""
for i in range(n):
bin_string += "1" if np.random.random() < 0.5 else "0"
return bin_string
def split_into_blocks(word, block_size):
blocks = []
for i in range(0, len(word), block_size):
block = word[i:i + block_size]
blocks.append(block)
return blocks
def main():
p = 0.1
n = 1000
detected_blocks = 0
repeats = 0
total_errors = 0
total_transmited_data = 0
# LSB -> MSB
s = "110011101100101"
# s = "110011101100101"
word = generate_random_binary(n)
# MSB -> LSB
g = "100101"
poly = "100101"
prf = CRC_Parity(s, g)
print(prf)
blocksize = optimal_blocksize(p, word, poly)
print(channel_bsc(p, 15))
blocks = split_into_blocks(word, blocksize)
p_k_Fehler(p)
for i, block in enumerate(blocks):
# CRC-Codierung
crc_bits = CRC_Parity(block, poly)
codeword = crc_bits + block
# BSC-Kanal
error_pattern = channel_bsc(p, len(codeword))
received = send_channel(p, codeword, error_pattern)
# Fehlerprüfung
check = CRC_Parity(received, poly)
print(f"==========BLOCK {i + 1}==========")
print(f" Codewort: {codeword}")
print(f" Empfangen: {received}")
detected_blocks += 1 if "1" in check else 0
total_transmited_data += len(codeword)
repeats += 1
if "1" in check:
print(" ❌ Fehler ")
total_errors += error_pattern.count("1")
else:
print(" ✅ Erfolgreich")
'''
Version in der fehlerhafte Übertragungen so lange wiederholt werden, bis sie fehlerfrei sind
'''
'''
while "1" in check:
print(" ❌ Fehler ")
total_errors += error_pattern.count("1")
# erneute Übertragung
repeats += 1
total_transmited_data += len(codeword)
error_pattern = channel_bsc(p, len(codeword))
received = send_channel(p, codeword, error_pattern)
check = CRC_Parity(received, poly)
print(f" Empfangen: {received}")
print(" ✅ Erfolgreich \n")
'''
# Ende
print("============ ERGEBNISSE ============")
print(f"ursprüngliche Datenmenge: {n} Bits")
print(f" p: {p * 100} %")
print(f" generator Polynom: {poly}")
print(f" Blockgröße: {blocksize}")
print(f" Blockanzahl: {len(blocks)}")
print(f" übertragene Datenmenge: {total_transmited_data} Bit")
print(
f" fehlerfreie Blöcke: {len(blocks) - detected_blocks} = {((len(blocks) - detected_blocks) / len(blocks) * 100):.2f} %")
print(f" Wiederholungen: {repeats}, ca. {(repeats / len(blocks)):.1f} p.Bl.")
print(f" fehlerhafte Bits: {total_errors} Bit = {(total_errors / total_transmited_data * 100):.2f}%")
if __name__ == '__main__':
main()