Files
InfTh/P2/main.py

238 lines
6.0 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
# Linear Feedback Shift Register
class LFSR:
def __init__(self, poly):
# LSB -> MSB
self.g = []
self.reg = []
'''
poly = str(n, n-1, ..., 0) => g = [0, ..., n-1]
0, 1, ..., -1
[-1:0:-1] = von(inkl.):bis(exkl.):Schritt => [Ende:Anfang[
'''
for ziffer in poly[-1:0:-1]:
self.reg.append(0)
self.g.append(int(ziffer))
def get_reg_as_string(self):
reg_string = ""
for i in self.reg:
reg_string += str(i) # LSB -> MSB
return reg_string
def shift(self, s_i):
reg_old = self.reg.copy() # alter Zustand, um überschreibungen zu vermeiden
feedback = reg_old[-1] ^ int(s_i)
for i, value in enumerate(self.g):
if i == 0:
self.reg[i] = feedback
else:
if value == 1:
self.reg[i] = reg_old[i - 1] ^ feedback
else:
self.reg[i] = reg_old[i - 1]
def CRC_Parity(s, g):
schiebe_reg = LFSR(g)
# LSB -> MSB => MSB -> LSB
for s_i in s[::-1]:
schiebe_reg.shift(s_i)
return schiebe_reg.get_reg_as_string()
def channel_bsc(p, n):
errors = ""
for i in range(n):
errors += "1" if np.random.random() < p else "0"
return errors
def send_channel(p, codeword, error_pattern):
received = ""
for j in range(len(codeword)):
bit1 = int(codeword[j])
bit2 = int(error_pattern[j])
received += str(bit1 ^ bit2)
return received
def p_k_Fehler(p):
# P_k = (nCk) * p^k * (1-p)^(n-k)
n = 1000
p_k = []
k_values = list(range(1, n + 1))
for k in k_values:
nCk = 1
for i in range(1, k + 1, 1):
nCk = nCk * ((n + 1 - i) / i)
# p_k = (nCk) * p^k * (1-p)^(n-k)
p_k.append(nCk * pow(p, k) * pow((1 - p), (n - k)))
plt.figure(figsize=(12, 8))
plt.plot(k_values, p_k) # plot(x,y)
# Achsenbeschriftung
plt.xlabel('k (Anzahl Fehler)', fontsize=12)
plt.ylabel('p_k', fontsize=12)
plt.title(f'Fehlerwahrscheinlichkeiten BSC Kanal (p={p}, n={n})', fontsize=14)
# Grid
plt.grid(True, alpha=0.3)
# Zeige Plot
plt.tight_layout() # Besseres Layout
plt.show()
def optimal_blocksize(p, word, poly):
crc_bits = len(poly) - 1
n = len(word)
best_datasize = float('inf')
best_blocksize = 0
for i in range(10):
block_size_i = 2 ** i
if block_size_i < n:
blocks = n / block_size_i
codeword_size = block_size_i + crc_bits
p_succesful = (1 - p) ** codeword_size
block_avrg_reps = 1 / p_succesful
block_avrg_datasize = codeword_size * block_avrg_reps
total_avrg_datasize = block_avrg_datasize * blocks
if total_avrg_datasize < best_datasize:
best_datasize = total_avrg_datasize
best_blocksize = block_size_i
return best_blocksize
def generate_random_binary(n):
bin_string = ""
for i in range(n):
bin_string += "1" if np.random.random() < 0.5 else "0"
return bin_string
def split_into_blocks(word, block_size):
blocks = []
for i in range(0, len(word), block_size):
block = word[i:i + block_size]
blocks.append(block)
return blocks
def main():
p = 0.1
n = 1000
detected_blocks = 0
repeats = 0
total_errors = 0
total_transmited_data = 0
# LSB -> MSB
# s = "110011101100101"
word = generate_random_binary(n)
# MSB -> LSB
poly = "100101"
blocksize = optimal_blocksize(p, word, poly)
blocks = split_into_blocks(word, blocksize)
p_k_Fehler(p)
for i, block in enumerate(blocks):
# CRC-Codierung
crc_bits = CRC_Parity(block, poly)
codeword = crc_bits + block
# BSC-Kanal
error_pattern = channel_bsc(p, len(codeword))
received = send_channel(p, codeword, error_pattern)
# Fehlerprüfung
check = CRC_Parity(received, poly)
print(f"==========BLOCK {i + 1}==========")
print(f" Codewort: {codeword}")
print(f" Fehlerwort: {error_pattern}")
print(f" Empfangen: {received}")
detected_blocks += 1 if "1" in check else 0
total_transmited_data += len(codeword)
repeats += 1
'''
if "1" in check:
print(" ❌ Fehler ")
total_errors += error_pattern.count("1")
else:
print(" ✅ Erfolgreich")
'''
'''
Version in der fehlerhafte Übertragungen so lange wiederholt werden, bis sie fehlerfrei sind
'''
while "1" in check:
print(" ❌ Fehler ")
total_errors += error_pattern.count("1")
# erneute Übertragung
repeats += 1
total_transmited_data += len(codeword)
error_pattern = channel_bsc(p, len(codeword))
received = send_channel(p, codeword, error_pattern)
check = CRC_Parity(received, poly)
print(f" Empfangen: {received}")
print(" ✅ Erfolgreich \n")
# Ende
print("============ ERGEBNISSE ============")
print(f"ursprüngliche Datenmenge: {n} Bits")
print(f" p: {p * 100} %")
print(f" generator Polynom: {poly}")
print(f" Blockgröße: {blocksize}")
print(f" Blockanzahl: {len(blocks)}")
print(f" übertragene Datenmenge: {total_transmited_data} Bit")
print(f" fehlerfreie Blöcke: {len(blocks) - detected_blocks} = {((len(blocks) - detected_blocks) / len(blocks) * 100):.2f} %")
print(f" Wiederholungen: {repeats}, ca. {(repeats / len(blocks)):.1f} p.Bl.")
print(f" fehlerhafte Bits: {total_errors} Bit = {(total_errors / total_transmited_data * 100):.2f}%")
if __name__ == '__main__':
main()