Ui responsiveness #65

Merged
ka4299s merged 6 commits from UI-Responsiveness into dev 2024-11-17 17:40:58 +01:00
39 changed files with 147 additions and 3 deletions
Showing only changes of commit ec1a79f1b6 - Show all commits

View File

@@ -1,5 +1,5 @@
{ {
"displayName": "Thema 1", "displayName": "Schriftliches Multiplizieren",
"icon": "fa-divide", "icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas", "description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [ "relatedTopics": [

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Rechnen mit Zeit",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Punkt- vor Strichrechnung",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Rechnen mit Klammern",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -1,5 +1,5 @@
{ {
"displayName": "Thema 2", "displayName": "Schriftliches Dividieren",
"icon": "fa-divide", "icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas", "description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [ "relatedTopics": [

View File

@@ -1,5 +1,5 @@
{ {
"displayName": "Thema 3", "displayName": "Echte Brüche",
"icon": "fa-divide", "icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas", "description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [ "relatedTopics": [

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Unechte Brüche",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Gemischte Zahlen",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Addition & Subtraktion mit Brüchen",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Multiplikation & Division mit Brüchen",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Rechnen mit Gewichten",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Rechnen mit Längen",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}