238 lines
6.0 KiB
Python
238 lines
6.0 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
|
|
# Linear Feedback Shift Register
|
|
class LFSR:
|
|
def __init__(self, poly):
|
|
# LSB -> MSB
|
|
self.g = []
|
|
self.reg = []
|
|
|
|
'''
|
|
poly = str(n, n-1, ..., 0) => g = [0, ..., n-1]
|
|
0, 1, ..., -1
|
|
|
|
[-1:0:-1] = von(inkl.):bis(exkl.):Schritt => [Ende:Anfang[
|
|
'''
|
|
for ziffer in poly[-1:0:-1]:
|
|
self.reg.append(0)
|
|
self.g.append(int(ziffer))
|
|
|
|
def get_reg_as_string(self):
|
|
reg_string = ""
|
|
|
|
for i in self.reg:
|
|
reg_string += str(i) # LSB -> MSB
|
|
|
|
return reg_string
|
|
|
|
def shift(self, s_i):
|
|
reg_old = self.reg.copy() # alter Zustand, um überschreibungen zu vermeiden
|
|
|
|
feedback = reg_old[-1] ^ int(s_i)
|
|
|
|
for i, value in enumerate(self.g):
|
|
if i == 0:
|
|
self.reg[i] = feedback
|
|
else:
|
|
if value == 1:
|
|
self.reg[i] = reg_old[i - 1] ^ feedback
|
|
else:
|
|
self.reg[i] = reg_old[i - 1]
|
|
|
|
|
|
def CRC_Parity(s, g):
|
|
schiebe_reg = LFSR(g)
|
|
|
|
# LSB -> MSB => MSB -> LSB
|
|
for s_i in s[::-1]:
|
|
schiebe_reg.shift(s_i)
|
|
|
|
return schiebe_reg.get_reg_as_string()
|
|
|
|
|
|
def channel_bsc(p, n):
|
|
errors = ""
|
|
|
|
for i in range(n):
|
|
errors += "1" if np.random.random() < p else "0"
|
|
|
|
return errors
|
|
|
|
|
|
def send_channel(p, codeword, error_pattern):
|
|
received = ""
|
|
|
|
for j in range(len(codeword)):
|
|
bit1 = int(codeword[j])
|
|
bit2 = int(error_pattern[j])
|
|
received += str(bit1 ^ bit2)
|
|
|
|
return received
|
|
|
|
|
|
def p_k_Fehler(p):
|
|
# P_k = (nCk) * p^k * (1-p)^(n-k)
|
|
n = 1000
|
|
p_k = []
|
|
k_values = list(range(1, n + 1))
|
|
|
|
for k in k_values:
|
|
nCk = 1
|
|
for i in range(1, k + 1, 1):
|
|
nCk = nCk * ((n + 1 - i) / i)
|
|
|
|
# p_k = (nCk) * p^k * (1-p)^(n-k)
|
|
p_k.append(nCk * pow(p, k) * pow((1 - p), (n - k)))
|
|
|
|
plt.figure(figsize=(12, 8))
|
|
plt.plot(k_values, p_k) # plot(x,y)
|
|
|
|
# Achsenbeschriftung
|
|
plt.xlabel('k (Anzahl Fehler)', fontsize=12)
|
|
plt.ylabel('p_k', fontsize=12)
|
|
plt.title(f'Fehlerwahrscheinlichkeiten BSC Kanal (p={p}, n={n})', fontsize=14)
|
|
|
|
# Grid
|
|
plt.grid(True, alpha=0.3)
|
|
|
|
# Zeige Plot
|
|
plt.tight_layout() # Besseres Layout
|
|
plt.show()
|
|
|
|
|
|
def optimal_blocksize(p, word, poly):
|
|
crc_bits = len(poly) - 1
|
|
n = len(word)
|
|
|
|
best_datasize = float('inf')
|
|
best_blocksize = 0
|
|
|
|
for i in range(10):
|
|
block_size_i = 2 ** i
|
|
if block_size_i < n:
|
|
blocks = n / block_size_i
|
|
codeword_size = block_size_i + crc_bits
|
|
p_succesful = (1 - p) ** codeword_size
|
|
block_avrg_reps = 1 / p_succesful
|
|
block_avrg_datasize = codeword_size * block_avrg_reps
|
|
|
|
total_avrg_datasize = block_avrg_datasize * blocks
|
|
if total_avrg_datasize < best_datasize:
|
|
best_datasize = total_avrg_datasize
|
|
best_blocksize = block_size_i
|
|
|
|
return best_blocksize
|
|
|
|
|
|
def generate_random_binary(n):
|
|
bin_string = ""
|
|
|
|
for i in range(n):
|
|
bin_string += "1" if np.random.random() < 0.5 else "0"
|
|
|
|
return bin_string
|
|
|
|
|
|
def split_into_blocks(word, block_size):
|
|
blocks = []
|
|
|
|
for i in range(0, len(word), block_size):
|
|
block = word[i:i + block_size]
|
|
blocks.append(block)
|
|
|
|
return blocks
|
|
|
|
|
|
def main():
|
|
p = 0.1
|
|
n = 1000
|
|
|
|
detected_blocks = 0
|
|
repeats = 0
|
|
total_errors = 0
|
|
total_transmited_data = 0
|
|
|
|
# LSB -> MSB
|
|
# s = "110011101100101"
|
|
word = generate_random_binary(n)
|
|
|
|
# MSB -> LSB
|
|
poly = "100101"
|
|
|
|
blocksize = optimal_blocksize(p, word, poly)
|
|
|
|
blocks = split_into_blocks(word, blocksize)
|
|
|
|
p_k_Fehler(p)
|
|
|
|
for i, block in enumerate(blocks):
|
|
# CRC-Codierung
|
|
crc_bits = CRC_Parity(block, poly)
|
|
codeword = crc_bits + block
|
|
|
|
# BSC-Kanal
|
|
error_pattern = channel_bsc(p, len(codeword))
|
|
received = send_channel(p, codeword, error_pattern)
|
|
|
|
# Fehlerprüfung
|
|
check = CRC_Parity(received, poly)
|
|
|
|
print(f"==========BLOCK {i + 1}==========")
|
|
print(f" Codewort: {codeword}")
|
|
print(f" Fehlerwort: {error_pattern}")
|
|
print(f" Empfangen: {received}")
|
|
|
|
detected_blocks += 1 if "1" in check else 0
|
|
total_transmited_data += len(codeword)
|
|
repeats += 1
|
|
|
|
'''
|
|
if "1" in check:
|
|
print(" ❌ Fehler ")
|
|
total_errors += error_pattern.count("1")
|
|
else:
|
|
print(" ✅ Erfolgreich")
|
|
|
|
'''
|
|
|
|
|
|
'''
|
|
Version in der fehlerhafte Übertragungen so lange wiederholt werden, bis sie fehlerfrei sind
|
|
'''
|
|
|
|
|
|
while "1" in check:
|
|
print(" ❌ Fehler ")
|
|
total_errors += error_pattern.count("1")
|
|
|
|
# erneute Übertragung
|
|
repeats += 1
|
|
total_transmited_data += len(codeword)
|
|
error_pattern = channel_bsc(p, len(codeword))
|
|
received = send_channel(p, codeword, error_pattern)
|
|
check = CRC_Parity(received, poly)
|
|
print(f" Empfangen: {received}")
|
|
|
|
print(" ✅ Erfolgreich \n")
|
|
|
|
|
|
|
|
|
|
# Ende
|
|
print("============ ERGEBNISSE ============")
|
|
print(f"ursprüngliche Datenmenge: {n} Bits")
|
|
print(f" p: {p * 100} %")
|
|
print(f" generator Polynom: {poly}")
|
|
print(f" Blockgröße: {blocksize}")
|
|
print(f" Blockanzahl: {len(blocks)}")
|
|
print(f" übertragene Datenmenge: {total_transmited_data} Bit")
|
|
print(f" fehlerfreie Blöcke: {len(blocks) - detected_blocks} = {((len(blocks) - detected_blocks) / len(blocks) * 100):.2f} %")
|
|
print(f" Wiederholungen: {repeats}, ca. {(repeats / len(blocks)):.1f} p.Bl.")
|
|
print(f" fehlerhafte Bits: {total_errors} Bit = {(total_errors / total_transmited_data * 100):.2f}%")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|