Files
KI/P2.py
Safak 54c7d351a7 optimized inference
Backtrack class
2025-06-22 03:20:31 +02:00

271 lines
8.5 KiB
Python

import random
from pickletools import read_uint1
class Field:
def __init__(self, init_state=None, model=None):
self.state = []
self.domain_values = [1, 2, 3, 4, 5, 6, 7, 8]
if init_state is None:
for i in range(8):
self.state.append(random.randint(1, 8)) # row number [1:8]
else:
self.state = init_state.copy()
self.threats = self.collisions(self.state)
self.fitness = 28 - self.threats
self.model = model
def get_fitness(self):
return self.fitness
def get_state(self):
return self.state
def get_domain_values(self):
return self.domain_values
# Actions
def set_state(self, column, row=None):
if row is None:
self.state[column] = random.randint(1, 8)
elif 0 < row < 9:
if column < len(self.state):
self.state[column] = row
elif column == len(self.state):
self.state.append(row)
def set_domain_values(self, new_domain):
self.domain_values = new_domain
def add_queen(self, row):
if len(self.get_state()) < 8:
self.set_state(len(self.get_state()), row)
def move_queen(self, column, new_row=None):
self.set_state(column, new_row)
# Update
self.threats = self.collisions()
self.fitness = 28 - self.threats
def move_all_queens(self, new_state=None):
if new_state is None:
for i in range(8):
self.move_queen(i)
else:
for i, new_row in enumerate(new_state):
self.move_queen(i, new_row)
# heuristics functions
def collisions(self, current_state=None):
# wagerechte haben die gleiche row zahl stehe
# diagonale haben einen wert der um den spalten-abstand gemindert ist => gleichseitiges rechtwinkliges Dreieck
# Beachte die Spalten/ Linien Nr ist um eins verringert [0, 1, ...,7]
if current_state is None:
current_state = self.get_state()
collisions = 0
for i, row_i in enumerate(current_state):
for j, row_j in enumerate(current_state):
if j is not i:
# horizontal diagonal in both sides up and down and counting "twice"
if row_i == row_j or row_j == (row_i + abs(j - i)) or row_j == (row_i - abs(j - i)):
collisions += 1
# print(f"{i+1}-{row_i} <=> {j+1}-{row_j}") # Debugging
return collisions / 2
def print_field(self):
print("\n ┌───┬───┬───┬───┬───┬───┬───┬───┐")
for row in range(8, 0, -1): # (0:8]
row_string = ""
for line in range(8):
if line < len(self.state) and row is self.state[
line]: # is there a Queen in this line (spalte) in this row
if (row + line) % 2 == 0:
row_string += "▌Q▐│"
else:
row_string += " Q │"
elif (row + line) % 2 == 0:
row_string += "███│"
else:
row_string += ""
print(f"{row} |{row_string}")
if row > 1: print(" ├───┼───┼───┼───┼───┼───┼───┼───┤")
print(" └───┴───┴───┴───┴───┴───┴───┴───┘")
print(" A B C D E F G H \n")
def calc(self):
if self.model == "genetic":
best_state = Genetic().calc()
self.state = best_state.get_state()
self.print_field()
elif self.model == "backtrack":
Backtrack().calc()
class Genetic:
def __init__(self, size=1000):
self.initial_population = []
self.p_mutation = 0.1
for i in range(size):
self.initial_population.append(Field())
def random_selection(self, population):
"""
input:
population: a set of individuals
Fitness-FN: # of non-attacking queens (max 28)
returns:
Basierend auf der Verteilung der heuristischen Werte (Fitness) soll zufällig ein Eintrag (Field) gewählt werden, d.h. je höher der heuritische Wert (Fitness) ist, umso höher soll die Wahrscheinlichkeit sein, dass ein Field ausgewählt wird
"""
fitness = []
for field in population:
fitness.append(field.get_fitness())
chosen = random.choices(population, weights=fitness, k=1)[0]
return chosen
def mutation(self, field):
"""
input:
state: a single individuals
returns:
randomly mutated version of it
"""
field.move_queen(random.randint(0, 7), random.randint(1, 8))
def reproduce(self, x, y):
child = []
n = len(x.get_state())
c = random.randint(1, n)
child.extend(x.get_state()[:c]) # Slice operator Syntax [a:b[
child.extend(y.get_state()[c:])
return Field(child)
def genetic_algorithm(self, n):
"""
population: a set of individuals
Fitness-FN: # of non-attacking queens (max 28)
"""
current_population = self.initial_population
new_population = []
best_field = self.initial_population[0]
for i in range(n):
for j in range(len(self.initial_population)):
x = self.random_selection(current_population)
y = self.random_selection(current_population)
child = self.reproduce(x, y)
if random.random() < self.p_mutation:
self.mutation(child)
new_population.append(child)
if child.get_fitness() > best_field.get_fitness():
best_field = child
if best_field.get_fitness() == 28:
break
print(f"{i} {best_field.get_state()} {best_field.get_fitness()}")
if best_field.get_fitness() == 28:
break
current_population = new_population
new_population = []
return best_field
def calc(self, n=100):
best_genetic_field = self.genetic_algorithm(n)
return best_genetic_field
class Backtrack:
def __init__(self):
self.results = []
def consistency(self, field, new_row):
current_state = field.get_state().copy()
current_state.append(new_row)
new_field = Field(current_state)
if new_field.threats > 0:
return False
else:
return True
def inference(self, field):
if len(field.get_state()) >= 8:
return True
field.set_domain_values([1, 2, 3, 4, 5, 6, 7, 8]) # Reset für jede Spalte
inferences = []
# print(field.get_state())
# print(field.get_domain_values())
for new_row in range(1, 9):
if not self.consistency(field, new_row):
inferences.append(new_row)
for row in inferences:
if row in field.get_domain_values():
field.get_domain_values().remove(row)
# print(inferences)
# print(f"{field.get_domain_values()}\n")
if len(field.get_domain_values()) == 0:
return False
return True
def backtracing(self, field):
if len(field.get_state()) == 8:
return [Field(field.get_state().copy())]
solutions = []
for row in field.get_domain_values():
old_domain_values = field.get_domain_values().copy()
if self.consistency(field, row):
field.add_queen(row)
if self.inference(field): # nur für die nächste Spalte
result = self.backtracing(field)
if len(result) != 0:
solutions.extend(result)
field.get_state().pop()
field.domain_values = old_domain_values
return solutions
def calc(self):
for i in range(1, 9):
result = self.backtracing(Field([i]))
self.results.extend(result)
for i, result in enumerate(self.results):
print(f"{i + 1} {result.get_state()}")
def main():
gen_field = Field(model="genetic")
gen_field.calc()
back_field = Field(model="backtrack")
back_field.calc()
myField = Field()
myField.print_field()
main()