optimized inference
Backtrack class
This commit is contained in:
149
P2.py
149
P2.py
@@ -1,8 +1,9 @@
|
||||
import random
|
||||
from pickletools import read_uint1
|
||||
|
||||
|
||||
class Field:
|
||||
def __init__(self, init_state=None):
|
||||
def __init__(self, init_state=None, model=None):
|
||||
self.state = []
|
||||
self.domain_values = [1, 2, 3, 4, 5, 6, 7, 8]
|
||||
|
||||
@@ -15,6 +16,8 @@ class Field:
|
||||
self.threats = self.collisions(self.state)
|
||||
self.fitness = 28 - self.threats
|
||||
|
||||
self.model = model
|
||||
|
||||
def get_fitness(self):
|
||||
return self.fitness
|
||||
|
||||
@@ -37,7 +40,7 @@ class Field:
|
||||
def set_domain_values(self, new_domain):
|
||||
self.domain_values = new_domain
|
||||
|
||||
def add_state(self, row):
|
||||
def add_queen(self, row):
|
||||
if len(self.get_state()) < 8:
|
||||
self.set_state(len(self.get_state()), row)
|
||||
|
||||
@@ -96,11 +99,20 @@ class Field:
|
||||
print(" └───┴───┴───┴───┴───┴───┴───┴───┘")
|
||||
print(" A B C D E F G H \n")
|
||||
|
||||
def calc(self):
|
||||
if self.model == "genetic":
|
||||
best_state = Genetic().calc()
|
||||
self.state = best_state.get_state()
|
||||
self.print_field()
|
||||
|
||||
elif self.model == "backtrack":
|
||||
Backtrack().calc()
|
||||
|
||||
|
||||
class Genetic:
|
||||
def __init__(self, size=100):
|
||||
def __init__(self, size=1000):
|
||||
self.initial_population = []
|
||||
self.p_mutation = 0
|
||||
self.p_mutation = 0.1
|
||||
|
||||
for i in range(size):
|
||||
self.initial_population.append(Field())
|
||||
@@ -163,93 +175,96 @@ class Genetic:
|
||||
if best_field.get_fitness() == 28:
|
||||
break
|
||||
|
||||
print(f"{i} {best_field.get_state()} {best_field.get_fitness()}")
|
||||
if best_field.get_fitness() == 28:
|
||||
break
|
||||
|
||||
current_population = new_population
|
||||
new_population = []
|
||||
|
||||
return best_field
|
||||
|
||||
|
||||
def consistency(field, new_row):
|
||||
current_state = field.get_state().copy()
|
||||
current_state.append(new_row)
|
||||
new_field = Field(current_state)
|
||||
|
||||
if new_field.threats > 0:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
def calc(self, n=100):
|
||||
best_genetic_field = self.genetic_algorithm(n)
|
||||
return best_genetic_field
|
||||
|
||||
|
||||
def inference(field):
|
||||
inferences = []
|
||||
column = len(field.get_state()) - 1
|
||||
state = field.get_state().copy()
|
||||
row = state[column]
|
||||
class Backtrack:
|
||||
def __init__(self):
|
||||
self.results = []
|
||||
|
||||
for i in range(len(field.get_state()), 8):
|
||||
removed_values = []
|
||||
for new_row in field.get_domain_values():
|
||||
new_state = state.copy()
|
||||
new_state.append(new_row)
|
||||
new_field = Field(new_state)
|
||||
if new_field.threats > 0:
|
||||
removed_values.append(new_row)
|
||||
def consistency(self, field, new_row):
|
||||
current_state = field.get_state().copy()
|
||||
current_state.append(new_row)
|
||||
new_field = Field(current_state)
|
||||
|
||||
for i in removed_values:
|
||||
if i in field.get_domain_values():
|
||||
field.get_domain_values().remove(i)
|
||||
if new_field.threats > 0:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
inferences.extend(removed_values)
|
||||
def inference(self, field):
|
||||
if len(field.get_state()) >= 8:
|
||||
return True
|
||||
|
||||
field.set_domain_values([1, 2, 3, 4, 5, 6, 7, 8]) # Reset für jede Spalte
|
||||
inferences = []
|
||||
# print(field.get_state())
|
||||
# print(field.get_domain_values())
|
||||
|
||||
for new_row in range(1, 9):
|
||||
if not self.consistency(field, new_row):
|
||||
inferences.append(new_row)
|
||||
|
||||
for row in inferences:
|
||||
if row in field.get_domain_values():
|
||||
field.get_domain_values().remove(row)
|
||||
|
||||
# print(inferences)
|
||||
# print(f"{field.get_domain_values()}\n")
|
||||
|
||||
if len(field.get_domain_values()) == 0:
|
||||
return False, inferences
|
||||
return False
|
||||
|
||||
return True, inferences
|
||||
return True
|
||||
|
||||
def backtracing(self, field):
|
||||
if len(field.get_state()) == 8:
|
||||
return [Field(field.get_state().copy())]
|
||||
|
||||
def backtracing(field):
|
||||
if len(field.get_state()) == 8:
|
||||
return [Field(field.get_state().copy())]
|
||||
solutions = []
|
||||
|
||||
solutions = []
|
||||
iter_domain = field.get_domain_values().copy()
|
||||
for row in field.get_domain_values():
|
||||
old_domain_values = field.get_domain_values().copy()
|
||||
if self.consistency(field, row):
|
||||
field.add_queen(row)
|
||||
if self.inference(field): # nur für die nächste Spalte
|
||||
result = self.backtracing(field)
|
||||
if len(result) != 0:
|
||||
solutions.extend(result)
|
||||
|
||||
for row in iter_domain:
|
||||
if consistency(field, row):
|
||||
field.add_state(row)
|
||||
result = backtracing(field)
|
||||
if len(result) != 0:
|
||||
solutions.extend(result)
|
||||
field.get_state().pop()
|
||||
field.domain_values = old_domain_values
|
||||
|
||||
field.get_state().pop()
|
||||
return solutions
|
||||
|
||||
return solutions
|
||||
|
||||
|
||||
def backtracing_helper(field):
|
||||
results = backtracing(field)
|
||||
|
||||
return results
|
||||
def calc(self):
|
||||
for i in range(1, 9):
|
||||
result = self.backtracing(Field([i]))
|
||||
self.results.extend(result)
|
||||
for i, result in enumerate(self.results):
|
||||
print(f"{i + 1} {result.get_state()}")
|
||||
|
||||
|
||||
def main():
|
||||
new_field = Field(
|
||||
init_state=[]) # [8, 4, 5, 4, 4, 3, 7, 6] [5, 5, 5, 5, 1, 2, 8, 5] [6,3,5,7,1,4,2,8]
|
||||
new_field.print_field()
|
||||
print(new_field.collisions())
|
||||
gen_field = Field(model="genetic")
|
||||
gen_field.calc()
|
||||
|
||||
print("Backtrack Algorithm")
|
||||
results = []
|
||||
for i in range(1, 9):
|
||||
results.extend(backtracing_helper(Field([i])))
|
||||
for i, result in enumerate(results):
|
||||
print(f"{i+1} {result.get_state()}")
|
||||
back_field = Field(model="backtrack")
|
||||
back_field.calc()
|
||||
|
||||
print("Genetic Algorithm")
|
||||
genetic = Genetic(500)
|
||||
best_genetic_field = genetic.genetic_algorithm(100)
|
||||
best_genetic_field.print_field()
|
||||
print(best_genetic_field.get_fitness())
|
||||
myField = Field()
|
||||
myField.print_field()
|
||||
|
||||
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user