Downloadlinks und Erklärungstexte funktional

This commit is contained in:
Matthias Grief
2024-11-15 23:41:23 +01:00
parent ac828ae8de
commit 679bd66f7e
39 changed files with 145 additions and 8 deletions

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

View File

@@ -7,6 +7,5 @@
],
"files": [
"exercise1.pdf"
],
"article": "Eine lange Erklärung\n![Alt Text](image.png)"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 2",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic1", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 3",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic1", "topic2"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 1",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 1",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 1",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 1",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 1",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -1,11 +1,11 @@
{
"displayName": "Thema 2",
"icon": "fa-ruler",
"description": "Kurze Beschreibung",
"displayName": "Thema 1",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic3"
"topic2", "topic3"
],
"files": [
],
"article": "Erklärung"
"exercise1.pdf"
]
}

View File

@@ -0,0 +1,5 @@
Das ist der Erklärtext
<img alt="Ein Bild" src="$TOPICPATH/image.png">
<br>
When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 KiB

View File

@@ -0,0 +1,11 @@
{
"displayName": "Thema 1",
"icon": "fa-divide",
"description": "Eine kurze Beschreibung des Themas",
"relatedTopics": [
"topic2", "topic3"
],
"files": [
"exercise1.pdf"
]
}